IB Mathematics SL 5.5 Introduction to integration AA SL Paper 1- Exam Style Questions- New Syllabus
Consider the functions \( f(x) = \cos x \) and \( g(x) = \sin 2x \), where \( 0 \leq x \leq \pi \). The graph of \( f \) intersects the graph of \( g \) at the point A, the point B \( \left( \frac{\pi}{2}, 0 \right) \), and the point C, as shown in the following diagram.
Part (a):
Find the x-coordinate of point A and the x-coordinate of point C. [3]
Part (b):
The shaded region \( R \) is enclosed by the graph of \( f \) and the graph of \( g \) between the points B and C. Find the area of \( R \). [4]
▶️ Answer/Explanation
Part (a)
The graphs of \( f(x) = \cos x \) and \( g(x) = \sin 2x \) intersect at points A, B, and C. Given B at \( \left( \frac{\pi}{2}, 0 \right) \):
\[ f\left( \frac{\pi}{2} \right) = \cos \frac{\pi}{2} = 0, \quad g\left( \frac{\pi}{2} \right) = \sin \left( 2 \cdot \frac{\pi}{2} \right) = \sin \pi = 0 \]
Confirming B is an intersection point. To find A and C, set \( f(x) = g(x) \):
\[ \cos x = \sin 2x \]
Use the identity \( \sin 2x = 2 \sin x \cos x \):
\[ \cos x = 2 \sin x \cos x \]
\[ \cos x – 2 \sin x \cos x = 0 \]
\[ \cos x (1 – 2 \sin x) = 0 \]
Solutions:
1. \( \cos x = 0 \):
\[ x = \frac{\pi}{2} \quad (\text{point B}) \]
2. \( 1 – 2 \sin x = 0 \):
\[ 2 \sin x = 1 \]
\[ \sin x = \frac{1}{2} \]
In \( [0, \pi] \):
\[ x = \frac{\pi}{6} \quad (\text{since } \sin \frac{\pi}{6} = \frac{1}{2}) \]
\[ x = \pi – \frac{\pi}{6} = \frac{5\pi}{6} \quad (\text{since } \sin (\pi – x) = \sin x) \]
From the graph, point A has the smallest x-coordinate, and point C the largest:
– Point A: \( x = \frac{\pi}{6} \)
– Point C: \( x = \frac{5\pi}{6} \)
Verify:
At \( x = \frac{\pi}{6} \):
\[ f\left( \frac{\pi}{6} \right) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad g\left( \frac{\pi}{6} \right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \]
At \( x = \frac{5\pi}{6} \):
\[ f\left( \frac{5\pi}{6} \right) = \cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}, \quad g\left( \frac{5\pi}{6} \right) = \sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2} \]
Answer: x-coordinate of A: \( \frac{\pi}{6} \), x-coordinate of C: \( \frac{5\pi}{6} \).
Part (b)
Region \( R \) is enclosed by \( f(x) = \cos x \) and \( g(x) = \sin 2x \) from \( x = \frac{\pi}{2} \) to \( x = \frac{5\pi}{6} \), where \( g(x) \geq f(x) \).
The area is:
\[ \text{Area} = \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (g(x) – f(x)) \, dx = \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (\sin 2x – \cos x) \, dx \]
Method 1:
Integrate \( \cos x – \sin 2x \):
\[ \int (\cos x – \sin 2x) \, dx \]
\[ \int \cos x \, dx = \sin x \]
\[ \int -\sin 2x \, dx = -\int \sin 2x \, dx \]
Substitute \( u = 2x \), \( du = 2 \, dx \), \( dx = \frac{du}{2} \):
\[ -\int \sin 2x \, dx = -\int \sin u \cdot \frac{du}{2} = -\frac{1}{2} (-\cos u) = \frac{1}{2} \cos 2x \]
Antiderivative:
\[ \sin x + \frac{1}{2} \cos 2x \]
Evaluate:
\[ \left[ \sin x + \frac{1}{2} \cos 2x \right]_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \]
At \( x = \frac{5\pi}{6} \):
\[ \sin \frac{5\pi}{6} = \frac{1}{2}, \quad \cos \left( 2 \cdot \frac{5\pi}{6} \right) = \cos \frac{5\pi}{3} = \frac{1}{2} \]
\[ \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \]
At \( x = \frac{\pi}{2} \):
\[ \sin \frac{\pi}{2} = 1, \quad \cos \left( 2 \cdot \frac{\pi}{2} \right) = \cos \pi = -1 \]
\[ 1 + \frac{1}{2} \cdot (-1) = 1 – \frac{1}{2} = \frac{1}{2} \]
\[ \frac{3}{4} – \frac{1}{2} = \frac{3}{4} – \frac{2}{4} = \frac{1}{4} \]
Area: \( \frac{1}{4} \).
Method 2:
Compute separately:
\[ \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \cos x \, dx = \left[ \sin x \right]_{\frac{\pi}{2}}^{\frac{5\pi}{6}} = \sin \frac{5\pi}{6} – \sin \frac{\pi}{2} = \frac{1}{2} – 1 = -\frac{1}{2} \]
\[ \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \sin 2x \, dx = \left[ -\frac{1}{2} \cos 2x \right]_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \]
\[ = -\frac{1}{2} \cos \frac{5\pi}{3} + \frac{1}{2} \cos \pi = -\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot (-1) = -\frac{1}{4} – \frac{1}{2} = -\frac{3}{4} \]
Area:
\[ \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (\sin 2x – \cos x) \, dx = -\frac{3}{4} – \left(-\frac{1}{2}\right) = -\frac{3}{4} + \frac{1}{2} = -\frac{1}{4} \]
Take absolute value: \( \left| -\frac{1}{4} \right| = \frac{1}{4} \).
Answer: Area of \( R \) is \( \frac{1}{4} \).