IBDP Maths SL 5.9 Kinematic problems involving displacement, velocity and acceleration AA HL Paper 1- Exam Style Questions- New Syllabus
The acceleration, \(a \, \text{ms}^{-2}\), of a particle moving in a horizontal line at time \(t\) seconds, \(t \geq 0\), is given by \(a = -(1 + v)\), where \(v \, \text{ms}^{-1}\) is the particle’s velocity and \(v > -1\).
At \(t = 0\), the particle is at a fixed origin \(O\) and has initial velocity \(v_0 \, \text{ms}^{-1}\).
a. By solving an appropriate differential equation, show that the particle’s velocity at time \(t\) is given by \(v(t) = (1 + v_0) e^{-t} – 1\). [6]
b. Initially at \(O\), the particle moves in the positive direction until it reaches its maximum displacement from \(O\). The particle then returns to \(O\).
Let \(s\) metres represent the particle’s displacement from \(O\) and \(s_{\text{max}}\) its maximum displacement from \(O\).
(i) Show that the time \(T\) taken for the particle to reach \(s_{\text{max}}\) satisfies the equation \(e^T = 1 + v_0\). [3]
(ii) By solving an appropriate differential equation and using the result from part (b)(i), find an expression for \(s_{\text{max}}\) in terms of \(v_0\). [4]
Let \(v(T – k)\) represent the particle’s velocity \(k\) seconds before it reaches \(s_{\text{max}}\), where \(v(T – k) = (1 + v_0) e^{-(T – k)} – 1\).
c. By using the result from part (b)(i), show that \(v(T – k) = e^k – 1\). [2]
Similarly, let \(v(T + k)\) represent the particle’s velocity \(k\) seconds after it reaches \(s_{\text{max}}\).
d. Deduce a similar expression for \(v(T + k)\) in terms of \(k\). [2]
e. Hence, show that \(v(T – k) + v(T + k) \geq 0\). [3]
▶️ Answer/Explanation
Given \(a = \frac{dv}{dt} = -(1 + v)\), rewrite the differential equation:
\(\frac{dv}{dt} + v = -1\) M1
This is a first-order linear differential equation. The integrating factor is:
\(e^{\int 1 \, dt} = e^t\) M1
Multiply through by \(e^t\):
\(\frac{d}{dt}(v e^t) = -e^t\) A1
Integrate both sides:
\(v e^t = -\int e^t \, dt = -e^t + c\) A1
\(v = -1 + c e^{-t}\)
Apply initial condition \(v = v_0\) at \(t = 0\):
\(v_0 = -1 + c \implies c = 1 + v_0\) A1
Thus, \(v(t) = (1 + v_0) e^{-t} – 1\) A1
[6 marks]
(i) At maximum displacement \(s_{\text{max}}\), \(v(T) = 0\). Using \(v(t) = (1 + v_0) e^{-t} – 1\):
\(v(T) = (1 + v_0) e^{-T} – 1 = 0\) M1
\((1 + v_0) e^{-T} = 1 \implies 1 + v_0 = e^T\) A1A1
[3 marks]
(ii) Since \(\frac{ds}{dt} = v(t) = (1 + v_0) e^{-t} – 1\), integrate to find \(s(t)\):
\(s = \int ((1 + v_0) e^{-t} – 1) \, dt = -(1 + v_0) e^{-t} – t + c\) M1A1
At \(t = 0\), \(s = 0\):
\(0 = -(1 + v_0) e^0 + c = -(1 + v_0) + c \implies c = 1 + v_0\)
\(s(t) = (1 + v_0) – (1 + v_0) e^{-t} – t\) A1
At \(t = T\), \(s = s_{\text{max}}\), and from (b)(i), \(e^T = 1 + v_0 \implies e^{-T} = \frac{1}{1 + v_0}\):
\(s_{\text{max}} = (1 + v_0) – (1 + v_0) e^{-T} – T = (1 + v_0) – (1 + v_0) \cdot \frac{1}{1 + v_0} – \ln(1 + v_0) = (1 + v_0) – 1 – \ln(1 + v_0) = v_0 – \ln(1 + v_0)\) A1
[4 marks]
Given \(v(T – k) = (1 + v_0) e^{-(T – k)} – 1\), and from (b)(i), \(1 + v_0 = e^T\):
\(v(T – k) = (1 + v_0) e^{-T} e^k – 1 = e^T \cdot e^{-T} e^k – 1 = e^k – 1\) M1A1
[2 marks]
For \(v(T + k) = (1 + v_0) e^{-(T + k)} – 1\):
Using \(1 + v_0 = e^T\):
\(v(T + k) = (1 + v_0) e^{-T} e^{-k} – 1 = e^T \cdot e^{-T} e^{-k} – 1 = e^{-k} – 1\) M1A1
[2 marks]
Using results from (c) and (d):
\(v(T – k) + v(T + k) = (e^k – 1) + (e^{-k} – 1) = e^k + e^{-k} – 2\) M1
Rewrite: \(e^k + e^{-k} – 2 = \frac{e^{2k} + 1 – 2e^k}{e^k} = \frac{(e^k – 1)^2}{e^k}\) A1
Since \((e^k – 1)^2 \geq 0\) and \(e^k > 0\), \(\frac{(e^k – 1)^2}{e^k} \geq 0\). Thus, \(v(T – k) + v(T + k) \geq 0\). R1
[3 marks]
Total [20 marks]