Home / differential equations AA HL Paper 3

IB Mathematics AHL 5.18 differential equations AA HL Paper 3 | Exam Style Questions

IB Mathematics AHL 5.18 differential equations AA HL Paper 3 - Exam Style Questions

Question

Consider the differential equation \(\frac{dy}{dx} = \frac{4x^2 + y^2 – xy}{x^2}\), with \(y = 2\) when \(x = 1\).

Part (a):
Use Euler’s method, with step length \(h = 0.1\), to find an approximate value of \(y\) when \(x = 1.4\). [5]

Part (b):
Sketch the isoclines for \(\frac{dy}{dx} = 4\). [2]

Part (c):
(i) Express \(m^2 – 2m + 4\) in the form \((m – a)^2 + b\), where \(a, b \in \mathbb{Z}\). [1]
(ii) Solve the differential equation, for \(x > 0\), giving your answer in the form \(y = f(x)\). [7]
(iii) Sketch the graph of \(y = f(x)\) for \(1 \leq x \leq 1.4\). [1]
(iv) With reference to the curvature of your sketch in part (c)(iii), and without further calculation, explain whether you conjecture \(f(1.4)\) will be less than, equal to, or greater than your answer in part (a). [2]

▶️ Answer/Explanation
Detailed Solutions

Part (a) [5 marks]

Use Euler’s method: \(y_{n+1} = y_n + h \cdot f(x_n, y_n)\), where \(f(x, y) = \frac{4x^2 + y^2 – xy}{x^2}\), \(h = 0.1\), and initial condition \(y(1) = 2\).

Step 1: At \(x_0 = 1\), \(y_0 = 2\):

\[f(1, 2) = \frac{4(1)^2 + (2)^2 – (1)(2)}{(1)^2} = \frac{4 + 4 – 2}{1} = 6\]

\[y_1 = 2 + 0.1 \cdot 6 = 2.6 \quad (x_1 = 1.1)\]

Step 2: At \(x_1 = 1.1\), \(y_1 = 2.6\):

\[f(1.1, 2.6) = \frac{4(1.1)^2 + (2.6)^2 – (1.1)(2.6)}{(1.1)^2} = \frac{4(1.21) + 6.76 – 2.86}{1.21} = \frac{4.84 + 6.76 – 2.86}{1.21} = \frac{8.74}{1.21} \approx 7.22\]

\[y_2 = 2.6 + 0.1 \cdot 7.22 = 2.6 + 0.722 = 3.322 \quad (x_2 = 1.2)\]

Step 3: At \(x_2 = 1.2\), \(y_2 = 3.322\):

\[f(1.2, 3.322) = \frac{4(1.2)^2 + (3.322)^2 – (1.2)(3.322)}{(1.2)^2} = \frac{4(1.44) + 11.035684 – 3.9864}{1.44} \approx \frac{5.76 + 11.035684 – 3.9864}{1.44} \approx 8.86\]

\[y_3 = 3.322 + 0.1 \cdot 8.86 = 3.322 + 0.886 = 4.208 \quad (x_3 = 1.3)\]

Step 4: At \(x_3 = 1.3\), \(y_3 = 4.208\):

\[f(1.3, 4.208) = \frac{4(1.3)^2 + (4.208)^2 – (1.3)(4.208)}{(1.3)^2} = \frac{4(1.69) + 17.707264 – 5.4704}{1.69} \approx \frac{6.76 + 17.707264 – 5.4704}{1.69} \approx 11.26\]

\[y_4 = 4.208 + 0.1 \cdot 11.26 = 4.208 + 1.126 = 5.334 \quad (x_4 = 1.4)\]

Thus, \(y(1.4) \approx 5.34\).

Euler's method steps

Part (b) [2 marks]

Solve for isoclines where \(\frac{dy}{dx} = 4\):

\[\frac{4x^2 + y^2 – xy}{x^2} = 4\]

\[y^2 – xy = 0\]

\[y(y – x) = 0\]

Thus, \(y = 0\) or \(y = x\).

Sketch shows two straight lines: the x-axis (\(y = 0\)) and the line \(y = x\).

Isoclines for dy/dx = 4

Part (c)(i) [1 mark]

Complete the square for \(m^2 – 2m + 4\):

\[m^2 – 2m + 4 = (m^2 – 2m + 1) + 3 = (m – 1)^2 + 3\]

Thus, \(a = 1\), \(b = 3\).

Part (c)(ii) [7 marks]

Recognize the differential equation as homogeneous:

\[\frac{dy}{dx} = \frac{4x^2 + y^2 – xy}{x^2} = 4 + \left(\frac{y}{x}\right)^2 – \frac{y}{x}\]

Let \(y = vx\), so \(\frac{dy}{dx} = v + x \frac{dv}{dx}\):

\[v + x \frac{dv}{dx} = 4 + v^2 – v\]

\[x \frac{dv}{dx} = v^2 – 2v + 4\]

Separate variables: \[\int \frac{1}{v^2 – 2v + 4} \, dv = \int \frac{1}{x} \, dx\]

From part (c)(i), \(v^2 – 2v + 4 = (v – 1)^2 + 3\):

\[\int \frac{1}{(v – 1)^2 + 3} \, dv = \int \frac{1}{x} \, dx\]

Left side: \[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) + C_1\]

Right side: \[\ln x + C_2\]

\[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + c\]

Use initial condition \(x = 1\), \(y = 2\), so \(v = \frac{2}{1} = 2\):

\[\frac{1}{\sqrt{3}} \arctan\left(\frac{2 – 1}{\sqrt{3}}\right) = \ln 1 + c\]

\[\frac{1}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = c\]

\[\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\], so \(c = \frac{\pi}{6 \sqrt{3}}\)

\[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + \frac{\pi}{6 \sqrt{3}}\]

\[\arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \sqrt{3} \ln x + \frac{\pi}{6}\]

Substitute \(v = \frac{y}{x}\):

\[\frac{y}{x} – 1 = \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right)\]

\[y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\]

Part (c)(iii) [1 mark]

Sketch the graph of \(y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\) for \(1 \leq x \leq 1.4\).

Graph of y = f(x) for 1 ≤ x ≤ 1.4

Curve drawn over the correct domain, passing through \((1, 2)\) and increasing.

Part (c)(iv) [2 marks]

The sketch in part (c)(iii) shows that \(f\) is concave up (or \(f’\) is increasing).

This implies that Euler’s method, which uses tangent lines, will underestimate the true value of \(f(x)\). Thus, \(f(1.4) > 5.34\).

Markscheme

(a)

Correct application of Euler’s method for each step [4]

Final answer: \(y(1.4) \approx 5.34\) (accurate to 3 significant figures) [1]

Euler's method steps

(b)

Attempts to solve \(\frac{4x^2 + y^2 – xy}{x^2} = 4\) [1]

Obtains \(y = 0\) or \(y = x\) and sketches correctly [1]

Isoclines for dy/dx = 4

(c)(i)

Completes the square: \(m^2 – 2m + 4 = (m – 1)^2 + 3\) [1]

(c)(ii)

Recognizes homogeneous equation, uses \(y = vx\) [1]

Substitutes to get \(x \frac{dv}{dx} = v^2 – 2v + 4\) [1]

Separates variables [1]

Uses \((v – 1)^2 + 3\) from (c)(i) [1]

Integrates: \(\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + c\) [2]

Applies initial condition to find \(c = \frac{\pi}{6 \sqrt{3}}\) [1]

Final solution: \(y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\) [1]

(c)(iii)

Correct sketch over \(1 \leq x \leq 1.4\) [1]

Graph of y = f(x) for 1 ≤ x ≤ 1.4

(c)(iv)

Identifies concave up curvature [1]

Concludes \(f(1.4) > 5.34\) due to underestimation by Euler’s method [1]

Scroll to Top