IB Mathematics AHL 5.18 differential equations AA HL Paper 3 - Exam Style Questions
Consider the differential equation \(\frac{dy}{dx} = \frac{4x^2 + y^2 – xy}{x^2}\), with \(y = 2\) when \(x = 1\).
Part (a):
Use Euler’s method, with step length \(h = 0.1\), to find an approximate value of \(y\) when \(x = 1.4\). [5]
Part (b):
Sketch the isoclines for \(\frac{dy}{dx} = 4\). [2]
Part (c):
(i) Express \(m^2 – 2m + 4\) in the form \((m – a)^2 + b\), where \(a, b \in \mathbb{Z}\). [1]
(ii) Solve the differential equation, for \(x > 0\), giving your answer in the form \(y = f(x)\). [7]
(iii) Sketch the graph of \(y = f(x)\) for \(1 \leq x \leq 1.4\). [1]
(iv) With reference to the curvature of your sketch in part (c)(iii), and without further calculation, explain whether you conjecture \(f(1.4)\) will be less than, equal to, or greater than your answer in part (a). [2]
▶️ Answer/Explanation
Part (a) [5 marks]
Use Euler’s method: \(y_{n+1} = y_n + h \cdot f(x_n, y_n)\), where \(f(x, y) = \frac{4x^2 + y^2 – xy}{x^2}\), \(h = 0.1\), and initial condition \(y(1) = 2\).
Step 1: At \(x_0 = 1\), \(y_0 = 2\):
\[f(1, 2) = \frac{4(1)^2 + (2)^2 – (1)(2)}{(1)^2} = \frac{4 + 4 – 2}{1} = 6\]
\[y_1 = 2 + 0.1 \cdot 6 = 2.6 \quad (x_1 = 1.1)\]
Step 2: At \(x_1 = 1.1\), \(y_1 = 2.6\):
\[f(1.1, 2.6) = \frac{4(1.1)^2 + (2.6)^2 – (1.1)(2.6)}{(1.1)^2} = \frac{4(1.21) + 6.76 – 2.86}{1.21} = \frac{4.84 + 6.76 – 2.86}{1.21} = \frac{8.74}{1.21} \approx 7.22\]
\[y_2 = 2.6 + 0.1 \cdot 7.22 = 2.6 + 0.722 = 3.322 \quad (x_2 = 1.2)\]
Step 3: At \(x_2 = 1.2\), \(y_2 = 3.322\):
\[f(1.2, 3.322) = \frac{4(1.2)^2 + (3.322)^2 – (1.2)(3.322)}{(1.2)^2} = \frac{4(1.44) + 11.035684 – 3.9864}{1.44} \approx \frac{5.76 + 11.035684 – 3.9864}{1.44} \approx 8.86\]
\[y_3 = 3.322 + 0.1 \cdot 8.86 = 3.322 + 0.886 = 4.208 \quad (x_3 = 1.3)\]
Step 4: At \(x_3 = 1.3\), \(y_3 = 4.208\):
\[f(1.3, 4.208) = \frac{4(1.3)^2 + (4.208)^2 – (1.3)(4.208)}{(1.3)^2} = \frac{4(1.69) + 17.707264 – 5.4704}{1.69} \approx \frac{6.76 + 17.707264 – 5.4704}{1.69} \approx 11.26\]
\[y_4 = 4.208 + 0.1 \cdot 11.26 = 4.208 + 1.126 = 5.334 \quad (x_4 = 1.4)\]
Thus, \(y(1.4) \approx 5.34\).
Part (b) [2 marks]
Solve for isoclines where \(\frac{dy}{dx} = 4\):
\[\frac{4x^2 + y^2 – xy}{x^2} = 4\]
\[y^2 – xy = 0\]
\[y(y – x) = 0\]
Thus, \(y = 0\) or \(y = x\).
Sketch shows two straight lines: the x-axis (\(y = 0\)) and the line \(y = x\).
Part (c)(i) [1 mark]
Complete the square for \(m^2 – 2m + 4\):
\[m^2 – 2m + 4 = (m^2 – 2m + 1) + 3 = (m – 1)^2 + 3\]
Thus, \(a = 1\), \(b = 3\).
Part (c)(ii) [7 marks]
Recognize the differential equation as homogeneous:
\[\frac{dy}{dx} = \frac{4x^2 + y^2 – xy}{x^2} = 4 + \left(\frac{y}{x}\right)^2 – \frac{y}{x}\]
Let \(y = vx\), so \(\frac{dy}{dx} = v + x \frac{dv}{dx}\):
\[v + x \frac{dv}{dx} = 4 + v^2 – v\]
\[x \frac{dv}{dx} = v^2 – 2v + 4\]
Separate variables: \[\int \frac{1}{v^2 – 2v + 4} \, dv = \int \frac{1}{x} \, dx\]
From part (c)(i), \(v^2 – 2v + 4 = (v – 1)^2 + 3\):
\[\int \frac{1}{(v – 1)^2 + 3} \, dv = \int \frac{1}{x} \, dx\]
Left side: \[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) + C_1\]
Right side: \[\ln x + C_2\]
\[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + c\]
Use initial condition \(x = 1\), \(y = 2\), so \(v = \frac{2}{1} = 2\):
\[\frac{1}{\sqrt{3}} \arctan\left(\frac{2 – 1}{\sqrt{3}}\right) = \ln 1 + c\]
\[\frac{1}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = c\]
\[\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\], so \(c = \frac{\pi}{6 \sqrt{3}}\)
\[\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + \frac{\pi}{6 \sqrt{3}}\]
\[\arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \sqrt{3} \ln x + \frac{\pi}{6}\]
Substitute \(v = \frac{y}{x}\):
\[\frac{y}{x} – 1 = \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right)\]
\[y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\]
Part (c)(iii) [1 mark]
Sketch the graph of \(y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\) for \(1 \leq x \leq 1.4\).
Curve drawn over the correct domain, passing through \((1, 2)\) and increasing.
Part (c)(iv) [2 marks]
The sketch in part (c)(iii) shows that \(f\) is concave up (or \(f’\) is increasing).
This implies that Euler’s method, which uses tangent lines, will underestimate the true value of \(f(x)\). Thus, \(f(1.4) > 5.34\).
(a)
Correct application of Euler’s method for each step [4]
Final answer: \(y(1.4) \approx 5.34\) (accurate to 3 significant figures) [1]
(b)
Attempts to solve \(\frac{4x^2 + y^2 – xy}{x^2} = 4\) [1]
Obtains \(y = 0\) or \(y = x\) and sketches correctly [1]
(c)(i)
Completes the square: \(m^2 – 2m + 4 = (m – 1)^2 + 3\) [1]
(c)(ii)
Recognizes homogeneous equation, uses \(y = vx\) [1]
Substitutes to get \(x \frac{dv}{dx} = v^2 – 2v + 4\) [1]
Separates variables [1]
Uses \((v – 1)^2 + 3\) from (c)(i) [1]
Integrates: \(\frac{1}{\sqrt{3}} \arctan\left(\frac{v – 1}{\sqrt{3}}\right) = \ln x + c\) [2]
Applies initial condition to find \(c = \frac{\pi}{6 \sqrt{3}}\) [1]
Final solution: \(y = x \left( \sqrt{3} \tan\left(\sqrt{3} \ln x + \frac{\pi}{6}\right) + 1 \right)\) [1]
(c)(iii)
Correct sketch over \(1 \leq x \leq 1.4\) [1]
(c)(iv)
Identifies concave up curvature [1]
Concludes \(f(1.4) > 5.34\) due to underestimation by Euler’s method [1]