IB Mathematics AHL 5.19 Maclaurin series AA HL Paper 3- Exam Style Questions- New Syllabus
This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18.
For each polygon in this question, let the numerical value of its area be \( A \) and let the numerical value of its perimeter be \( P \).
An \( n \)-sided regular polygon can be divided into \( n \) congruent isosceles triangles. Let \( x \) be the length of each of the two equal sides of one such isosceles triangle and let \( y \) be the length of the third side. The included angle between the two equal sides has magnitude \( \frac{2\pi}{n} \).
Part of such an \( n \)-sided regular polygon is shown in the following diagram:
Consider an \( n \)-sided regular polygon such that \( A = P \).
The Maclaurin series for \( \tan x \) is \( x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots \).
Consider a right-angled triangle with side lengths \( a, b, \) and \( \sqrt{a^2 + b^2} \), where \( a \geq b \), such that \( A = P \).
(a) Find the side length, \( s \), where \( s > 0 \), of a square such that \( A = P \). [3]
(b) Write down, in terms of \( x \) and \( n \), an expression for the area, \( A_T \), of one of these isosceles triangles. [1]
(c) Show that \( y = 2x \sin \frac{\pi}{n} \). [2]
(d) Use the results from parts (b) and (c) to show that \( A = P = 4n \tan \frac{\pi}{n} \). [7]
(e)(i) Find \( \lim_{n \to \infty} \left( 4n \tan \frac{\pi}{n} \right) \). [3]
(e)(ii) Interpret your answer to part (e)(i) geometrically. [1]
(f) Show that \( a = \frac{8}{b – 4} + 4 \). [7]
(g)(i) By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which \( a, b, A, P \in \mathbb{Z} \). [3]
(g)(ii) Determine the area and perimeter of these two right-angled triangles. [1]
▶️ Answer/Explanation
(a) Side Length of Square:
\[ A = s^2 \quad P = 4s \quad (A1) \]
\[ A = P \implies s^2 = 4s \quad (M1) \]
\[ s(s – 4) = 0 \implies s = 4 \quad (s > 0) \quad (A1) \]
Note: Award A1M1A0 if both \( s = 4 \) and \( s = 0 \) are stated.
[3 marks]
(b) Area of Isosceles Triangle:
\[ A_T = \frac{1}{2} x^2 \sin \frac{2\pi}{n} \quad (A1) \]
Note: Award A1 for a correct alternative form in terms of \( x \) and \( n \).
[1 mark]
(c) Derive \( y \):
Method 1:
Using \( \sin \theta = \frac{\text{opp}}{\text{hyp}} \quad (M1) \):
\[ \sin \frac{\pi}{n} = \frac{\frac{y}{2}}{x} \implies \frac{y}{2} = x \sin \frac{\pi}{n} \quad (A1) \]
\[ y = 2x \sin \frac{\pi}{n} \]
Method 2:
Using Pythagoras: \[ \left( \frac{y}{2} \right)^2 + h^2 = x^2 \], where \[ h = x \cos \frac{\pi}{n} \quad (M1) \]
\[ \left( \frac{y}{2} \right)^2 = x^2 – x^2 \cos^2 \frac{\pi}{n} = x^2 \sin^2 \frac{\pi}{n} \quad (A1) \]
\[ y = 2x \sin \frac{\pi}{n} \]
Method 3:
Using cosine rule: \[ y^2 = x^2 + x^2 – 2x^2 \cos \frac{2\pi}{n} = 2x^2 \left( 1 – \cos \frac{2\pi}{n} \right) = 4x^2 \sin^2 \frac{\pi}{n} \quad (M1)(A1) \]
\[ y = 2x \sin \frac{\pi}{n} \]
Method 4:
Using sine rule: \[ \frac{y}{\sin \frac{2\pi}{n}} = \frac{x}{\sin \left( \frac{\pi}{2} – \frac{\pi}{n} \right)} \quad (M1) \]
\[ y \cos \frac{\pi}{n} = x \sin \frac{2\pi}{n} = 2x \sin \frac{\pi}{n} \cos \frac{\pi}{n} \quad (A1) \]
\[ y = 2x \sin \frac{\pi}{n} \]
[2 marks]
(d) Show \( A = P = 4n \tan \frac{\pi}{n} \):
\[ A = n A_T = \frac{1}{2} n x^2 \sin \frac{2\pi}{n} \], \[ P = n y = n \cdot 2x \sin \frac{\pi}{n} \quad (M1) \]
\[ A = P \implies \frac{1}{2} n x^2 \sin \frac{2\pi}{n} = 2n x \sin \frac{\pi}{n} \quad (A1) \]
Use: \[ \sin \frac{2\pi}{n} = 2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} \quad (M1) \]
\[ \frac{1}{2} n x^2 \cdot 2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = 2n x \sin \frac{\pi}{n} \]
\[ n x^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = 2n x \sin \frac{\pi}{n} \quad (A1) \]
Factorize: \[ x \sin \frac{\pi}{n} \left( x \cos \frac{\pi}{n} – 2 \right) = 0 \quad (M1) \]
Since \( x \sin \frac{\pi}{n} \neq 0 \), \[ x = \frac{2}{\cos \frac{\pi}{n}} \quad (A1) \]
Substitute into \( P \): \[ P = n \cdot 2 \cdot \frac{2}{\cos \frac{\pi}{n}} \cdot \sin \frac{\pi}{n} = 4n \frac{\sin \frac{\pi}{n}}{\cos \frac{\pi}{n}} = 4n \tan \frac{\pi}{n} \quad (M1)(A1) \]
\[ A = P = 4n \tan \frac{\pi}{n} \]
[7 marks]
(e)(i) Limit:
Use Maclaurin series: \[ \tan \frac{\pi}{n} = \frac{\pi}{n} + \frac{\left( \frac{\pi}{n} \right)^3}{3} + \frac{2 \left( \frac{\pi}{n} \right)^5}{15} + \dots \quad (M1) \]
\[ 4n \tan \frac{\pi}{n} = 4n \left( \frac{\pi}{n} + \frac{\pi^3}{3n^3} + \frac{2\pi^5}{15n^5} + \dots \right) = 4\pi + \frac{4\pi^3}{3n^2} + \frac{8\pi^5}{15n^4} + \dots \quad (A1) \]
\[ \lim_{n \to \infty} \left( 4n \tan \frac{\pi}{n} \right) = 4\pi \quad (A1) \]
Note: Award M1A1A0 if \( \lim_{n \to \infty} \) is not stated.
[3 marks]
(e)(ii) Geometric Interpretation:
As \( n \to \infty \), the polygon becomes a circle with radius 2, area \( 4\pi \), and perimeter \( 4\pi \quad (R1) \).
Note: Award R1 for stating the polygon becomes a circle with area or perimeter \( 4\pi \), or \( A = P = 4\pi \).
[1 mark]
(f) Derive \( a \):
\[ A = \frac{1}{2} ab \], \[ P = a + b + \sqrt{a^2 + b^2} \quad (A1)(A1) \]
\[ A = P \implies \frac{1}{2} ab = a + b + \sqrt{a^2 + b^2} \quad (M1) \]
\[ \sqrt{a^2 + b^2} = \frac{1}{2} ab – (a + b) \quad (M1) \]
Square both sides: \[ a^2 + b^2 = \left( \frac{1}{2} ab – a – b \right)^2 \quad (M1) \]
\[ a^2 + b^2 = \frac{1}{4} a^2 b^2 – a^2 b – ab^2 + a^2 + 2ab + b^2 \quad (A1) \]
Simplify: \[ \frac{1}{4} a^2 b^2 – a^2 b – ab^2 + 2ab = 0 \quad (A1) \]
\[ a \left( \frac{1}{4} ab – a – b + 2 \right) = 0 \implies \frac{1}{4} ab – a – b + 2 = 0 \]
\[ ab – 4a = 4b – 8 \implies a = \frac{4b – 8}{b – 4} = \frac{8}{b – 4} + 4 \quad (M1)(A1) \]
[7 marks]
(g)(i) Right-Angled Triangles:
Substitute integer \( b \) into \( a = \frac{8}{b – 4} + 4 \), ensure \( a, b, \sqrt{a^2 + b^2} \in \mathbb{Z} \quad (M1) \):
For \( b = 5 \): \[ a = \frac{8}{5 – 4} + 4 = 12 \], hypotenuse \[ \sqrt{12^2 + 5^2} = 13 \]. Triangle: \( (5, 12, 13) \quad (A1) \).
For \( b = 6 \): \[ a = \frac{8}{6 – 4} + 4 = 8 \], hypotenuse \[ \sqrt{8^2 + 6^2} = 10 \]. Triangle: \( (6, 8, 10) \quad (A1) \).
[3 marks]
(g)(ii) Area and Perimeter:
For \( (5, 12, 13) \): \[ A = \frac{1}{2} \cdot 5 \cdot 12 = 30 \], \[ P = 5 + 12 + 13 = 30 \].
For \( (6, 8, 10) \): \[ A = \frac{1}{2} \cdot 6 \cdot 8 = 24 \], \[ P = 6 + 8 + 10 = 24 \quad (A1) \]
[1 mark]