Home / IB Mathematics AHL 5.19 Maclaurin series AA HL Paper 3- Exam Style Questions

IB Mathematics AHL 5.19 Maclaurin series AA HL Paper 3- Exam Style Questions

IB Mathematics AHL 5.19 Maclaurin series AA HL Paper 3- Exam Style Questions- New Syllabus

Question

This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18.

For each polygon in this question, let the numerical value of its area be \( A \) and let the numerical value of its perimeter be \( P \).

An \( n \)-sided regular polygon can be divided into \( n \) congruent isosceles triangles. Let \( x \) be the length of each of the two equal sides of one such isosceles triangle and let \( y \) be the length of the third side. The included angle between the two equal sides has magnitude \( \frac{2\pi}{n} \).

Part of such an \( n \)-sided regular polygon is shown in the following diagram:

Diagram of n-sided regular polygon

Consider an \( n \)-sided regular polygon such that \( A = P \).

The Maclaurin series for \( \tan x \) is \( x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots \).

Consider a right-angled triangle with side lengths \( a, b, \) and \( \sqrt{a^2 + b^2} \), where \( a \geq b \), such that \( A = P \).

(a) Find the side length, \( s \), where \( s > 0 \), of a square such that \( A = P \). [3]

(b) Write down, in terms of \( x \) and \( n \), an expression for the area, \( A_T \), of one of these isosceles triangles. [1]

(c) Show that \( y = 2x \sin \frac{\pi}{n} \). [2]

(d) Use the results from parts (b) and (c) to show that \( A = P = 4n \tan \frac{\pi}{n} \). [7]

(e)(i) Find \( \lim_{n \to \infty} \left( 4n \tan \frac{\pi}{n} \right) \). [3]

(e)(ii) Interpret your answer to part (e)(i) geometrically. [1]

(f) Show that \( a = \frac{8}{b – 4} + 4 \). [7]

(g)(i) By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which \( a, b, A, P \in \mathbb{Z} \). [3]

(g)(ii) Determine the area and perimeter of these two right-angled triangles. [1]

▶️ Answer/Explanation
Markscheme Solution

(a) Side Length of Square:

\[ A = s^2 \quad P = 4s \quad (A1) \]

\[ A = P \implies s^2 = 4s \quad (M1) \]

\[ s(s – 4) = 0 \implies s = 4 \quad (s > 0) \quad (A1) \]

Note: Award A1M1A0 if both \( s = 4 \) and \( s = 0 \) are stated.

[3 marks]

(b) Area of Isosceles Triangle:

\[ A_T = \frac{1}{2} x^2 \sin \frac{2\pi}{n} \quad (A1) \]

Note: Award A1 for a correct alternative form in terms of \( x \) and \( n \).

[1 mark]

(c) Derive \( y \):

Method 1:

Using \( \sin \theta = \frac{\text{opp}}{\text{hyp}} \quad (M1) \):

\[ \sin \frac{\pi}{n} = \frac{\frac{y}{2}}{x} \implies \frac{y}{2} = x \sin \frac{\pi}{n} \quad (A1) \]

\[ y = 2x \sin \frac{\pi}{n} \]

Method 2:

Using Pythagoras: \[ \left( \frac{y}{2} \right)^2 + h^2 = x^2 \], where \[ h = x \cos \frac{\pi}{n} \quad (M1) \]

\[ \left( \frac{y}{2} \right)^2 = x^2 – x^2 \cos^2 \frac{\pi}{n} = x^2 \sin^2 \frac{\pi}{n} \quad (A1) \]

\[ y = 2x \sin \frac{\pi}{n} \]

Method 3:

Using cosine rule: \[ y^2 = x^2 + x^2 – 2x^2 \cos \frac{2\pi}{n} = 2x^2 \left( 1 – \cos \frac{2\pi}{n} \right) = 4x^2 \sin^2 \frac{\pi}{n} \quad (M1)(A1) \]

\[ y = 2x \sin \frac{\pi}{n} \]

Method 4:

Using sine rule: \[ \frac{y}{\sin \frac{2\pi}{n}} = \frac{x}{\sin \left( \frac{\pi}{2} – \frac{\pi}{n} \right)} \quad (M1) \]

\[ y \cos \frac{\pi}{n} = x \sin \frac{2\pi}{n} = 2x \sin \frac{\pi}{n} \cos \frac{\pi}{n} \quad (A1) \]

\[ y = 2x \sin \frac{\pi}{n} \]

[2 marks]

(d) Show \( A = P = 4n \tan \frac{\pi}{n} \):

\[ A = n A_T = \frac{1}{2} n x^2 \sin \frac{2\pi}{n} \], \[ P = n y = n \cdot 2x \sin \frac{\pi}{n} \quad (M1) \]

\[ A = P \implies \frac{1}{2} n x^2 \sin \frac{2\pi}{n} = 2n x \sin \frac{\pi}{n} \quad (A1) \]

Use: \[ \sin \frac{2\pi}{n} = 2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} \quad (M1) \]

\[ \frac{1}{2} n x^2 \cdot 2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = 2n x \sin \frac{\pi}{n} \]

\[ n x^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = 2n x \sin \frac{\pi}{n} \quad (A1) \]

Factorize: \[ x \sin \frac{\pi}{n} \left( x \cos \frac{\pi}{n} – 2 \right) = 0 \quad (M1) \]

Since \( x \sin \frac{\pi}{n} \neq 0 \), \[ x = \frac{2}{\cos \frac{\pi}{n}} \quad (A1) \]

Substitute into \( P \): \[ P = n \cdot 2 \cdot \frac{2}{\cos \frac{\pi}{n}} \cdot \sin \frac{\pi}{n} = 4n \frac{\sin \frac{\pi}{n}}{\cos \frac{\pi}{n}} = 4n \tan \frac{\pi}{n} \quad (M1)(A1) \]

\[ A = P = 4n \tan \frac{\pi}{n} \]

[7 marks]

(e)(i) Limit:

Use Maclaurin series: \[ \tan \frac{\pi}{n} = \frac{\pi}{n} + \frac{\left( \frac{\pi}{n} \right)^3}{3} + \frac{2 \left( \frac{\pi}{n} \right)^5}{15} + \dots \quad (M1) \]

\[ 4n \tan \frac{\pi}{n} = 4n \left( \frac{\pi}{n} + \frac{\pi^3}{3n^3} + \frac{2\pi^5}{15n^5} + \dots \right) = 4\pi + \frac{4\pi^3}{3n^2} + \frac{8\pi^5}{15n^4} + \dots \quad (A1) \]

\[ \lim_{n \to \infty} \left( 4n \tan \frac{\pi}{n} \right) = 4\pi \quad (A1) \]

Note: Award M1A1A0 if \( \lim_{n \to \infty} \) is not stated.

[3 marks]

(e)(ii) Geometric Interpretation:

As \( n \to \infty \), the polygon becomes a circle with radius 2, area \( 4\pi \), and perimeter \( 4\pi \quad (R1) \).

Note: Award R1 for stating the polygon becomes a circle with area or perimeter \( 4\pi \), or \( A = P = 4\pi \).

[1 mark]

(f) Derive \( a \):

\[ A = \frac{1}{2} ab \], \[ P = a + b + \sqrt{a^2 + b^2} \quad (A1)(A1) \]

\[ A = P \implies \frac{1}{2} ab = a + b + \sqrt{a^2 + b^2} \quad (M1) \]

\[ \sqrt{a^2 + b^2} = \frac{1}{2} ab – (a + b) \quad (M1) \]

Square both sides: \[ a^2 + b^2 = \left( \frac{1}{2} ab – a – b \right)^2 \quad (M1) \]

\[ a^2 + b^2 = \frac{1}{4} a^2 b^2 – a^2 b – ab^2 + a^2 + 2ab + b^2 \quad (A1) \]

Simplify: \[ \frac{1}{4} a^2 b^2 – a^2 b – ab^2 + 2ab = 0 \quad (A1) \]

\[ a \left( \frac{1}{4} ab – a – b + 2 \right) = 0 \implies \frac{1}{4} ab – a – b + 2 = 0 \]

\[ ab – 4a = 4b – 8 \implies a = \frac{4b – 8}{b – 4} = \frac{8}{b – 4} + 4 \quad (M1)(A1) \]

[7 marks]

(g)(i) Right-Angled Triangles:

Substitute integer \( b \) into \( a = \frac{8}{b – 4} + 4 \), ensure \( a, b, \sqrt{a^2 + b^2} \in \mathbb{Z} \quad (M1) \):

For \( b = 5 \): \[ a = \frac{8}{5 – 4} + 4 = 12 \], hypotenuse \[ \sqrt{12^2 + 5^2} = 13 \]. Triangle: \( (5, 12, 13) \quad (A1) \).

For \( b = 6 \): \[ a = \frac{8}{6 – 4} + 4 = 8 \], hypotenuse \[ \sqrt{8^2 + 6^2} = 10 \]. Triangle: \( (6, 8, 10) \quad (A1) \).

[3 marks]

(g)(ii) Area and Perimeter:

For \( (5, 12, 13) \): \[ A = \frac{1}{2} \cdot 5 \cdot 12 = 30 \], \[ P = 5 + 12 + 13 = 30 \].

For \( (6, 8, 10) \): \[ A = \frac{1}{2} \cdot 6 \cdot 8 = 24 \], \[ P = 6 + 8 + 10 = 24 \quad (A1) \]

[1 mark]

Scroll to Top