IBDP Physics- D.1 Gravitational fields- IB Style Questions For SL Paper 1A -FA 2025
Question
(B) \(\frac{g}{2}\)
(C) \(2g\)
(D) \(6g\)
▶️ Answer/Explanation
1. Gravitational Field Strength Formula:
\(g = \frac{GM}{r^2}\).
2. Express Planet Parameters:
- \(M_P = \frac{1}{18} M_E\)
- \(r_P = \frac{1}{3} r_E\) (diameter ratio equals radius ratio)
3. Calculate \(g_P\):
\(g_P = \frac{G M_P}{r_P^2} = \frac{G (\frac{1}{18} M_E)}{(\frac{1}{3} r_E)^2}\)
\(g_P = \frac{\frac{1}{18}}{\frac{1}{9}} \frac{G M_E}{r_E^2}\)
\(g_P = \frac{9}{18} g = \frac{1}{2} g\).
✅ Answer: (B)
Question
▶️ Answer/Explanation
✅ Answer: (A)
On level ground (same launch speed \(V\) and angle \(\theta\)):
Maximum range: \(R = \dfrac{V^{2}\sin(2\theta)}{g}\)
Maximum height: \(H = \dfrac{V^{2}\sin^{2}(\theta)}{2g}\)
Both \(R\) and \(H\) are inversely proportional to \(g\).
On the planet: \(g_p = 3g\).
So,
\(R_p = \dfrac{V^{2}\sin(2\theta)}{3g} = \dfrac{R}{3}\)
\(H_p = \dfrac{V^{2}\sin^{2}(\theta)}{2(3g)} = \dfrac{H}{3}\)
Therefore the maximum range is \(\dfrac{R}{3}\) and the maximum height is \(\dfrac{H}{3}\).
Question
(B) \(\frac{16}{25}\)
(C) \(\frac{25}{16}\)
(D) \(\frac{5}{4}\)
▶️ Answer/Explanation
Gravitational force varies with distance from Earth’s centre as \(F \propto \frac{1}{r^2}\).
At the surface: \(r = R\), so \(F_{\text{surface}} \propto \frac{1}{R^2}\).
At height \(h=\frac{R}{4}\):
\(r = R+h = R+\frac{R}{4}=\frac{5R}{4}\), so \(F_{h} \propto \frac{1}{\left(\frac{5R}{4}\right)^2}\).
Therefore, \[ \frac{F_{\text{surface}}}{F_h} = \frac{\frac{1}{R^2}}{\frac{1}{\left(\frac{5R}{4}\right)^2}} = \left(\frac{5R}{4}\right)^2 \frac{1}{R^2} = \left(\frac{5}{4}\right)^2 = \frac{25}{16}. \]
✅ Answer: (C)
