IBDP Physics- D.3 Motion in electromagnetic fields - IB Style Questions For HL Paper 2 -FA 2025
Question
(a) Calculate the value of \(V\).
Initial speed of the electron \(= 9.4 \times 10^{6}\,m\,s^{-1}\)
Potential difference across the plates \(= 30\,V\)
Separation of the plates \(= 4.0\,cm\)
(ii) Show that the magnitude of the acceleration of the electron is approximately \(10^{14}\,m\,s^{-2}\).
Most-appropriate topic codes (IB Physics):
• Topic D.3: Motion in electromagnetic fields (velocity selector) — part (d)
▶️ Answer/Explanation
(a)
Using energy conservation, \[ \tfrac{1}{2}mv^2 = eV \] \[ V = \frac{0.5 \times 9.11 \times 10^{-31} \times (9.4 \times 10^6)^2}{1.60 \times 10^{-19}} \approx 2.5 \times 10^{2}\,V. \]
(b)
(i) The electron accelerates upwards, towards the positively charged plate.
(ii) The electric field strength is \[ E = \frac{V}{d} = \frac{30}{0.04} = 750\,V\,m^{-1}. \] The force on the electron is \[ F = qE = 1.60 \times 10^{-19} \times 750 = 1.2 \times 10^{-16}\,N. \] Hence, \[ a = \frac{F}{m} \approx \frac{1.2 \times 10^{-16}}{9.11 \times 10^{-31}} \approx 1.3 \times 10^{14}\,m\,s^{-2}. \]
(c)
The electron begins midway between the plates, so the vertical distance travelled is \(0.02\,m\). Using \[ s = \tfrac{1}{2}at^2 \] gives \[ t \approx 1.7 \times 10^{-8}\,s. \] The horizontal distance travelled is \[ x = vt \approx 9.4 \times 10^6 \times 1.7 \times 10^{-8} \approx 0.16\,m. \]
(d)
For no deflection, \[ qE = qvB. \] Therefore, \[ B = \frac{E}{v} = \frac{750}{9.4 \times 10^6} \approx 8.0 \times 10^{-5}\,T. \]
