Home / IBDP Maths AHL 5.19Maclaurin series AA HL Paper 1- Exam Style Questions

IBDP Maths AHL 5.19Maclaurin series AA HL Paper 1- Exam Style Questions

IBDP Maths AHL 5.19Maclaurin series AA HL Paper 1- Exam Style Questions- New Syllabus

Question

Consider the function \( f(x) = e^{\cos 2x} \), where \( -\pi \leq x \leq \frac{5\pi}{4} \).

(a) Find the coordinates of the points on the curve \( y = f(x) \) where the gradient is zero. [5]

(b) Using the second derivative at each point found in part (a), show that the curve \( y = f(x) \) has two local maximum points and one local minimum point. [4]

(c) Sketch the curve of \( y = f(x) \) for \( 0 \leq x \leq \pi \), taking into consideration the relative values of the second derivative found in part (b). [3]

(d) (i) Find the Maclaurin series for \( \cos 2x \), up to and including the term in \( x^4 \). [2]
(ii) Hence, find the Maclaurin series for \( e^{\cos 2x – 1} \), up to and including the term in \( x^4 \). [2]
(iii) Hence, write down the Maclaurin series for \( f(x) \), up to and including the term in \( x^4 \). [2]

(e) Use the first two non-zero terms in the Maclaurin series for \( f(x) \) to show that \( \int_{0}^{\frac{1}{10}} e^{\cos 2x} dx \approx \frac{149e}{1500} \). [3]

▶️ Answer/Explanation
Markscheme

(a) \( f'(x) = -2 \sin 2x e^{\cos 2x} = 0 \) M1.

\( \sin 2x = 0 \) A1.

\( x = -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi \) A1.

Coordinates: \( (-\pi, e) \), \( \left( -\frac{\pi}{2}, \frac{1}{e} \right) \), \( (0, e) \), \( \left( \frac{\pi}{2}, \frac{1}{e} \right) \), \( (\pi, e) \) A2.

[5 marks]

(b) \( f”(x) = 4 e^{\cos 2x} (\sin^2 2x – \cos 2x) \) M1.

At \( x = -\pi \), \( f”(-\pi) = -4e \) (local maximum) A1.

At \( x = -\frac{\pi}{2} \), \( f”(-\frac{\pi}{2}) = 4e^{-1} \) (local minimum) A1.

At \( x = 0 \), \( f”(0) = -4e \) (local maximum) A1.

At \( x = \frac{\pi}{2} \), \( f”(\frac{\pi}{2}) = 4e^{-1} \) (local minimum).

At \( x = \pi \), \( f”(\pi) = -4e \) (local maximum).

Conclusion: Two local maxima at \( x = -\pi, 0, \pi \), one local minimum at \( x = -\frac{\pi}{2} \) A1.

[4 marks]

(c) Sketch shows maxima at \( x = 0 \) (\( y = e \)) and \( x = \pi \) (\( y = e \)), minimum at \( x = \frac{\pi}{2} \) (\( y = \frac{1}{e} \)) M1.

Correct shape reflecting decrease from \( x = 0 \) to \( x = \frac{\pi}{2} \), increase from \( x = \frac{\pi}{2} \) to \( x = \pi \) A1.

Accurate labeling of key points A1.

For larger interval:

[3 marks]

(d) (i) \( \cos 2x = 1 – 2x^2 + \frac{2x^4}{3} \) M1 A1.

(ii) \( e^{\cos 2x – 1} = 1 – 2x^2 + \frac{8x^4}{3} \) M1 A1.

(iii) \( f(x) = e \left( 1 – 2x^2 + \frac{8x^4}{3} \right) \) M1 A1.

[6 marks]

(e) Using first two non-zero terms: \( f(x) \approx e (1 – 2x^2) \) M1.

\( \int_{0}^{\frac{1}{10}} e (1 – 2x^2) \, dx = e \left[ x – \frac{2x^3}{3} \right]_{0}^{\frac{1}{10}} = e \left( \frac{1}{10} – \frac{2}{3000} \right) = \frac{298e}{3000} = \frac{149e}{1500} \) M1 A1.

[3 marks]

Total [21 marks]
Question

Let \( f(x) = (1 – ax)^{-1/2} \), where \( ax < 1 \), \( a \neq 0 \).

The \( n \)-th derivative of \( f(x) \) is denoted by \( f^{(n)}(x) \), \( n \in \mathbb{Z}^+ \).

(a) Prove by induction that \( f^{(n)}(x) = \frac{a^n (2n-1)! (1-ax)^{-\frac{2n+1}{2}}}{2^{2n} n! (n-1)!} \), \( n \in \mathbb{Z}^+ \). [6 marks]

(b) By using part (a) or otherwise, show that the Maclaurin series for \( f(x) = (1 – ax)^{-1/2} \) up to and including the \( x^2 \) term is \( 1 + \frac{1}{2}ax + \frac{3}{8}a^2 x^2 \). [3 marks]

(c) Hence, show that \( (1 – 2x)^{-1/2} (1 – 4x)^{-1/2} \approx \frac{2 + 6x + 19x^2}{2} \). [3 marks]

(d) Given that the series expansion for \( (1 – ax)^{-1/2} \) converges for \( |ax| < 1 \), state the restriction which must be placed on \( x \) for the approximation \( (1 – 2x)^{-1/2} (1 – 4x)^{-1/2} \approx \frac{2 + 6x + 19x^2}{2} \) to be valid. [2 marks]

(e) Use \( x = \frac{1}{10} \) to determine an approximate value for \( \sqrt{3} \). Give your answer in the form \( \frac{c}{d} \), where \( c, d \in \mathbb{Z}^+ \). [3 marks]

▶️ Answer/Explanation
Markscheme

(a) For \( n = 1 \):

LHS: \( f^{(1)}(x) = \frac{1}{2} a (1 – ax)^{-3/2} \) M1.

RHS: \( \frac{a^1 (2 \cdot 1 – 1)! (1 – ax)^{-3/2}}{2^{2 \cdot 1} 1! (1-1)!} = \frac{a (1) (1 – ax)^{-3/2}}{4 \cdot 1 \cdot 1} = \frac{a}{2} (1 – ax)^{-3/2} \) A1.

True for \( n = 1 \).

Assume true for \( n = k \):

\( f^{(k)}(x) = \frac{a^k (2k-1)! (1 – ax)^{-\frac{2k+1}{2}}}{2^{2k} k! (k-1)!} \) M1.

For \( n = k+1 \), differentiate:

\( f^{(k+1)}(x) = \frac{d}{dx} \left( \frac{a^k (2k-1)! (1 – ax)^{-\frac{2k+1}{2}}}{2^{2k} k! (k-1)!} \right) \).

= \( \frac{(2k+1)}{2} \cdot (-a) \cdot \frac{a^k (2k-1)! (1 – ax)^{-\frac{2k+3}{2}}}{2^{2k} k! (k-1)!} \) M1.

Multiply numerator and denominator by \( 2k \):

= \( \frac{(2k+1) a^{k+1} (2k-1)! (1 – ax)^{-\frac{2k+3}{2}}}{2^{2k+1} k! (k-1)! \cdot 2k} \).

= \( \frac{a^{k+1} (2k+1)! (1 – ax)^{-\frac{2(k+1)+1}{2}}}{2^{2(k+1)} (k+1)! k!} \) A1.

True for \( n = k+1 \). Since true for \( n = 1 \), true for all \( n \in \mathbb{Z}^+ \) A1.

[6 marks]

(b) Maclaurin series: \( f(x) = f(0) + x f'(0) + \frac{x^2}{2} f”(0) + \dots \).

\( f(0) = (1 – 0)^{-1/2} = 1 \) M1.

\( f'(x) = \frac{1}{2} a (1 – ax)^{-3/2} \), so \( f'(0) = \frac{1}{2} a \) A1.

\( f”(x) = \frac{3}{4} a^2 (1 – ax)^{-5/2} \), so \( f”(0) = \frac{3}{4} a^2 \).

Series: \( f(x) = 1 + x \cdot \frac{1}{2} a + \frac{x^2}{2} \cdot \frac{3}{4} a^2 = 1 + \frac{1}{2} ax + \frac{3}{8} a^2 x^2 \) A1.

[3 marks]

(c) For \( (1 – 2x)^{-1/2} \), use part (b) with \( a = 2 \):

\( (1 – 2x)^{-1/2} = 1 + \frac{1}{2} \cdot 2x + \frac{3}{8} \cdot 4x^2 = 1 + x + \frac{3}{2} x^2 + \dots \) M1.

For \( (1 – 4x)^{-1/2} \), use part (b) with \( a = 4 \):

\( (1 – 4x)^{-1/2} = 1 + \frac{1}{2} \cdot 4x + \frac{3}{8} \cdot 16x^2 = 1 + 2x + 6x^2 + \dots \) M1.

Multiply up to \( x^2 \): \( (1 + x + \frac{3}{2} x^2) \cdot (1 + 2x + 6x^2) = 1 + (2x + x) + (6x^2 + 2x \cdot x + \frac{3}{2} x^2) = 1 + 3x + \frac{19}{2} x^2 \).

Thus, \( (1 – 2x)^{-1/2} (1 – 4x)^{-1/2} \approx \frac{2 + 6x + 19x^2}{2} \) A1.

[3 marks]

(d) For \( (1 – 2x)^{-1/2} \), \( |2x| < 1 \Rightarrow |x| < \frac{1}{2} \).

For \( (1 – 4x)^{-1/2} \), \( |4x| < 1 \Rightarrow |x| < \frac{1}{4} \) M1.

Stricter condition: \( |x| < \frac{1}{4} \) A1.

[2 marks]

(e) Substitute \( x = \frac{1}{10} \) into \( \frac{2 + 6x + 19x^2}{2} \):

\( \frac{2 + 6 \cdot \frac{1}{10} + 19 \cdot \left(\frac{1}{10}\right)^2}{2} = \frac{2 + 0.6 + 0.19}{2} = \frac{2.79}{2} = \frac{279}{200} \) M1.

\( (1 – 2 \cdot \frac{1}{10})^{-1/2} (1 – 4 \cdot \frac{1}{10})^{-1/2} = \left(1 – \frac{1}{5}\right)^{-1/2} \left(1 – \frac{2}{5}\right)^{-1/2} = \frac{5}{2\sqrt{3}} \approx \frac{279}{200} \).

Solve: \( \frac{5}{2\sqrt{3}} = \frac{279}{200} \Rightarrow \sqrt{3} = \frac{5 \cdot 200}{2 \cdot 279} = \frac{500}{279} \) A1.

Answer: \( \frac{500}{279} \) A1.

[3 marks]

Total [17 marks]
Scroll to Top