Home / IB DP Math AA -Topic SL 5.11 Definite integrals IB Style Question HL Paper 2

IB DP Math AA -Topic SL 5.11 Definite integrals IB Style Question HL Paper 2

Question

A particle moves in a straight line. The velocity, v ms1 , of the particle at time t seconds is given by v (t) = t sint – 3 , for 0 ≤ t ≤ 10.

The following diagram shows the graph of v .

                     

    1. Find the smallest value of t for which the particle is at rest. [2]

    2. Find the total distance travelled by the particle. [2]

    3. Find the acceleration of the particle when t = 7 . [2]

▶️Answer/Explanation

Ans:

(a) recognising v=o  t = 6.74416…  = 6.74 (sec)

= 37.0968…  = 37.1 (m)

(c) recognising acceleration at t = 7  is given by v’ (7) acceleration = 5.93430… = 5.93 (ms-2)

Question

Let f (x) =  \(\sqrt{12-2x}\) , x ≤ a . The following diagram shows part of the graph of f .

The shaded region is enclosed by the graph of f , the x-axis and the y-axis.

                          x

The graph of f intersects the x-axis at the point (a , 0) .

  1. Find the value of a . [2]

  2. Find the volume of the solid formed when the shaded region is revolved 360° about the x-axis. [5]

▶️Answer/Explanation

Ans:

(a)

recognize f (x) = 0 

eg \(\sqrt{12-2x}= 0, 2x=12\)

a= 6 (accept x= 6, (6,0))

(b)

attempt to substitute either their limits or the function into volume formula (must involve \(f^{2})\)

eg \(\int_{0}^{6}f^{2}dx , \pi \int (\sqrt{12-2x})^{2}, \pi \int_{0}^{6}\)(12-2x) dx

correct integaration of each term

eg \(12x-x^{2}, 12x-x^{2}\)+c, \(\left [ 12x-x^{2} \right ]_0^6\)

substituting limits into their integrated function and subtracting (in any order)

eg \(\pi (12(6)-(6)^{2})-\pi (0),72\pi -36\pi ,(12(6)-(6)^{2})-(0)\)

volume = \(36\pi \)

Question

a.Find  \(\int {\frac{1}{{2x + 3}}} {\rm{d}}x\) .[2]

b.Given that \(\int_0^3 {\frac{1}{{2x + 3}}} {\rm{d}}x = \ln \sqrt P \) , find the value of P.[4]

 
▶️Answer/Explanation

Markscheme

\(\int {\frac{1}{{2x + 3}}} {\rm{d}}x = \frac{1}{2}\ln (2x + 3) + C\)  (accept \(\frac{1}{2}\ln |(2x + 3)| + C\) )    A1A1     N2

[2 marks]

a.

\(\int_0^3 {\frac{1}{{2x + 3}}} {\rm{d}}x = \left[ {\frac{1}{2}\ln (2x + 3)} \right]_0^3\)

evidence of substitution of limits     (M1)

e.g.\(\frac{1}{2}\ln 9 – \frac{1}{2}\ln 3\)

evidence of correctly using \(\ln a – \ln b = \ln \frac{a}{b}\) (seen anywhere)     (A1)

e.g. \(\frac{1}{2}\ln 3\)

evidence of correctly using \(a\ln b = \ln {b^a}\) (seen anywhere)     (A1)

e.g. \(\ln \sqrt {\frac{9}{3}} \)

\(P = 3\) (accept \(\ln \sqrt 3 \) )     A1     N2

[4 marks]

b.

Question

The graph of \(f(x) = \sqrt {16 – 4{x^2}} \) , for \( – 2 \le x \le 2\) , is shown below.


The region enclosed by the curve of f and the x-axis is rotated \(360^\circ \) about the x-axis.

Find the volume of the solid formed.

▶️Answer/Explanation

Markscheme

attempt to set up integral expression     M1

e.g. \(\pi {\int {\sqrt {16 – 4{x^2}} } ^2}{\rm{d}}x\) , \(2\pi \int_0^2 {(16 – 4{x^2})} \) ,  \({\int {\sqrt {16 – 4{x^2}} } ^2}{\rm{d}}x\)

\(\int {16} {\rm{d}}x = 16x\) , \(\int {4{x^2}{\rm{d}}x = } \frac{{4{x^3}}}{3}\) (seen anywhere)     A1A1

evidence of substituting limits into the integrand     (M1)

e.g. \(\left( {32 – \frac{{32}}{3}} \right) – \left( { – 32 + \frac{{32}}{3}} \right)\) , \(64 – \frac{{64}}{3}\)

volume \(= \frac{{128\pi }}{3}\)     A2     N3

[6 marks]

Question

Given that \(\int_0^5 {\frac{2}{{2x + 5}}} {\rm{d}}x = \ln k\) , find the value of k .

▶️Answer/Explanation

Markscheme

correct integration, \(2 \times \frac{1}{2}\ln (2x + 5)\)     A1A1

Note: Award A1 for \(2 \times \frac{1}{2}( = 1)\) and A1 for \(\ln (2x + 5)\) .

evidence of substituting limits into integrated function and subtracting     (M1)

e.g. \(\ln (2 \times 5 + 5) – \ln (2 \times 0 + 5)\)

correct substitution     A1

e.g. \(\ln 15 – \ln 5\)

correct working     (A1)

e.g. \(\ln \frac{{15}}{5},\ln 3\)

\(k = 3\)     A1     N3 

[6 marks]

Question

Let \(\int_\pi ^a {\cos 2x{\text{d}}x}  = \frac{1}{2}{\text{, where }}\pi  < a < 2\pi \). Find the value of \(a\).

▶️Answer/Explanation

Markscheme

correct integration (ignore absence of limits and “\(+C\)”)     (A1)

eg     \(\frac{{\sin (2x)}}{2},{\text{ }}\int_\pi ^a {\cos 2x = \left[ {\frac{1}{2}\sin (2x)} \right]_\pi ^a} \)

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     \(\frac{1}{2}\sin (2a) – \frac{1}{2}\sin (2\pi ),{\text{ }}\sin (2\pi ) – \sin (2a)\)

\(\sin (2\pi ) = 0\)     (A1)

setting their result from an integrated function equal to \(\frac{1}{2}\)     M1

eg     \(\frac{1}{2}\sin 2a = \frac{1}{2},{\text{ }}\sin (2a) = 1\)

recognizing \({\sin ^{ – 1}}1 = \frac{\pi }{2}\)     (A1)

eg     \(2a = \frac{\pi }{2},{\text{ }}a = \frac{\pi }{4}\)

correct value     (A1)

eg     \(\frac{\pi }{2} + 2\pi ,{\text{ }}2a = \frac{{5\pi }}{2},{\text{ }}a = \frac{\pi }{4} + \pi \)

\(a = \frac{{5\pi }}{4}\)     A1     N3

[7 marks]

Scroll to Top