IB Mathematics SL 3.5 Definition of cos , sin and tan angles AA SL Paper 1- Exam Style Questions- New Syllabus
Let \( p = \sin 40^\circ \) and \( q = \cos 110^\circ \). Give your answers to the following in terms of \( p \) and/or \( q \).
Part (a):
(i) Write down an expression for \( \sin 140^\circ \). [1]
(ii) Write down an expression for \( \cos 70^\circ \). [1]
Part (b):
Find an expression for \( \cos 140^\circ \). [3]
Part (c):
Find an expression for \( \tan 140^\circ \). [1]
▶️ Answer/Explanation
Part (a)
(i) Find an expression for \( \sin 140^\circ \).
Use the angle identity: \( \sin (180^\circ – \theta) = \sin \theta \).
\[ \sin 140^\circ = \sin (180^\circ – 40^\circ) = \sin 40^\circ = p \]
Answer: \( \sin 140^\circ = p \).
(ii) Find an expression for \( \cos 70^\circ \).
Use the angle identity: \( \cos (180^\circ – \theta) = -\cos \theta \).
\[ \cos 70^\circ = \cos (180^\circ – 110^\circ) = -\cos 110^\circ = -q \]
Answer: \( \cos 70^\circ = -q \).
Part (b)
Find an expression for \( \cos 140^\circ \).
Method 1: Use the Pythagorean identity.
\[ \sin^2 \theta + \cos^2 \theta = 1 \]
For \( \theta = 140^\circ \), and using \( \sin 140^\circ = p \):
\[ \sin^2 140^\circ + \cos^2 140^\circ = 1 \]
\[ p^2 + \cos^2 140^\circ = 1 \]
\[ \cos^2 140^\circ = 1 – p^2 \]
\[ \cos 140^\circ = \pm \sqrt{1 – p^2} \]
Since \( 140^\circ \) is in the second quadrant, where cosine is negative:
\[ \cos 140^\circ = -\sqrt{1 – p^2} \]
Method 2: Use the double-angle formula for cosine.
\[ \cos 140^\circ = \cos (2 \cdot 70^\circ) = 2 \cos^2 70^\circ – 1 \]
From part (a)(ii), \( \cos 70^\circ = -q \):
\[ \cos 140^\circ = 2 (-q)^2 – 1 = 2q^2 – 1 \]
Answer: \( \cos 140^\circ = -\sqrt{1 – p^2} \) or \( \cos 140^\circ = 2q^2 – 1 \).
Part (c)
Find an expression for \( \tan 140^\circ \).
Use the definition of tangent: \( \tan \theta = \frac{\sin \theta}{\cos \theta} \).
From part (a)(i), \( \sin 140^\circ = p \).
From part (b), \( \cos 140^\circ = -\sqrt{1 – p^2} \) (Method 1) or \( \cos 140^\circ = 2q^2 – 1 \) (Method 2).
Method 1:
\[ \tan 140^\circ = \frac{\sin 140^\circ}{\cos 140^\circ} = \frac{p}{-\sqrt{1 – p^2}} = -\frac{p}{\sqrt{1 – p^2}} \]
Method 2:
\[ \tan 140^\circ = \frac{\sin 140^\circ}{\cos 140^\circ} = \frac{p}{2q^2 – 1} \]
Answer: \( \tan 140^\circ = -\frac{p}{\sqrt{1 – p^2}} \) or \( \tan 140^\circ = \frac{p}{2q^2 – 1} \).