IB Mathematics AHL 5.17 Coupled differential equations AI HL Paper 2- Exam Style Questions- New Syllabus
Consider the following system of coupled differential equations.
\( \frac{dx}{dt} = -4x \)
\( \frac{dy}{dt} = 3x – 2y \)
(a) Find the eigenvalues and corresponding eigenvectors of the matrix \( \begin{pmatrix} -4 & 0 \\ 3 & -2 \end{pmatrix} \).
(b) Hence, write down the general solution of the system.
(c) Determine, with justification, whether the equilibrium point \( (0, 0) \) is stable or unstable.
(d) Find the value of \( \frac{dy}{dx} \)
(i) at \( (4, 0) \).
(ii) at \( (-4, 0) \).
(e) Sketch a phase portrait for the general solution to the system of coupled differential equations for \( -6 \leq x \leq 6 \), \( -6 \leq y \leq 6 \).
▶️ Answer/Explanation
(a)
The matrix is \( \begin{pmatrix} -4 & 0 \\ 3 & -2 \end{pmatrix} \).
Characteristic equation: \( \det\begin{pmatrix} -4 – \lambda & 0 \\ 3 & -2 – \lambda \end{pmatrix} = 0 \).
\( (-4 – \lambda)(-2 – \lambda) = 0 \).
So, \( \lambda = -4 \) or \( \lambda = -2 \).
For \( \lambda = -4 \): Solve \( \begin{pmatrix} 0 & 0 \\ 3x – 2y & 2 \end{pmatrix} \), giving \( 3x – 2y = 0 \), so \( x = \frac{2}{3}y \). Eigenvector is \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) (or any multiple).
For \( \lambda = -2 \): Solve \( \begin{pmatrix} -2 & 0 \\ 3x – 2y & 0 \end{pmatrix} \), giving \( x = 0 \). Eigenvector is \( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) (or any multiple).
Explanation:
Eigenvalues are found from the characteristic equation; eigenvectors from the system with \( \lambda \) substituted.
Result:
Eigenvalues: \( \lambda = -4 \), \( \lambda = -2 \); Eigenvectors: \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \), \( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)
(b)
General solution: \( x = A e^{-4t} + B e^{-2t} \), \( y = \frac{3}{2} A e^{-4t} + C e^{-2t} \), where \( A, B, C \) are constants.
Explanation:
Use eigenvalues and eigenvectors to form the solution, adjusting for the system.
Result:
\( x = A e^{-4t} + B e^{-2t} \), \( y = \frac{3}{2} A e^{-4t} + C e^{-2t} \)
(c)
Both eigenvalues \( \lambda = -4 \) and \( \lambda = -2 \) are negative. Since \( e^{-4t} \to 0 \) and \( e^{-2t} \to 0 \) as \( t \to \infty \), the equilibrium point \( (0, 0) \) is stable.
Explanation:
Negative eigenvalues indicate a stable node where solutions decay to zero.
Result:
Stable
(d)
\( \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3x – 2y}{-4x} \).
(i) At \( (4, 0) \): \( \frac{dy}{dx} = \frac{3 \times 4 – 2 \times 0}{-4 \times 4} = \frac{12}{-16} = -\frac{3}{4} \).
(ii) At \( (-4, 0) \): \( \frac{dy}{dx} = \frac{3 \times -4 – 2 \times 0}{-4 \times -4} = \frac{-12}{16} = -\frac{3}{4} \).
Explanation:
Use the ratio of differential equations to find the slope.
Result:
(i) \( -\frac{3}{4} \), (ii) \( -\frac{3}{4} \)
(e)
Phase portrait: .
Shows trajectories converging to \( (0, 0) \) for \( -6 \leq x \leq 6 \), \( -6 \leq y \leq 6 \).
Explanation:
Sketch based on stable node behavior with negative eigenvalues.
Result:
Phase portrait as shown