IB Mathematics SL 1.7 Amortization and annuities AI SL Paper 2 - Exam Style Questions - New Syllabus
Question
▶️ Answer / Explanation (Detailed working)
Key ideas: Quarterly compounding: \(r_q=\frac{0.064}{4}=0.016\). Monthly annuity rate \(i=\frac{r}{12}\).
(a) Future value after \(2\) years with quarterly compounding:
(b) Minimum months \(m\) so that balance \(>50{,}000\) AUD. Compounded quarterly \(\Rightarrow\) number of quarters \(=\frac{m}{3}\):
(c) Loan amount: \[ 200{,}000\times(1-0.25)=\boxed{150{,}000\text{ AUD}}. \]
(d)(i) Total paid over 10 years minus principal:
Interest \(=204{,}000-150{,}000=\boxed{\$54{,}000}\).
(d)(ii) Nominal annual rate \(r\) (compounded monthly) from \[ 150{,}000 =1700\left[\frac{1-(1+\tfrac{r}{12})^{-120}}{\tfrac{r}{12}}\right]. \] Solve with a GDC/solver: \[ r\approx 0.0646\ \Rightarrow\ \boxed{6.46\%\ \text{p.a.}}. \]
(e) Final lump-sum after 60 payments equals outstanding balance \(B_{60}\):
(f) Savings if settling at 5 years instead of full term:
Paid with early settlement: \(60\times1700+86{,}973=188{,}973\).
Savings \(=204{,}000-188{,}973=\boxed{\$15{,}027}\).