Home / IB MYP 4-5 / IB MYP 4-5 Maths-Graphing trigonometric functions- Study Notes

IB MYP 4-5 Maths-Graphing trigonometric functions- Study Notes

IB MYP 4-5 Maths- Graphing trigonometric functions- Study Notes - New Syllabus

IB MYP 4-5 Maths- Graphing trigonometric functions – Study Notes

Extended

  • Graphing trigonometric functions

IB MYP 4-5 Maths- Graphing trigonometric functions – Study Notes – All topics

Graphing Trigonometric Functions

Graphing Trigonometric Functions

Trigonometric functions such as sine, cosine, and tangent are periodic functions with characteristic shapes and properties.

1. Sine Function $y = \sin x$

Key Properties:

  • Amplitude: 1 (default)
  • Period: \( 360^\circ \) or \( 2\pi \) radians
  • Domain: All real numbers
  • Range: \( -1 \le y \le 1 \)
  • Shape: Starts at 0, rises to 1, back to 0, down to -1, and repeats

Graph:

  

General Form:

\( y = a \sin(bx + c) + d \)

 

  • \( |a| \) = amplitude
  • Period = \( \dfrac{360^\circ}{b} \) (or \( \dfrac{2\pi}{b} \) in radians)
  • \( c \) = phase shift (horizontal shift)
  • \( d \) = vertical shift

Example : 

Sketch \( y = 3\sin x \) for \( 0^\circ \le x \le 360^\circ \).

▶️ Answer/Explanation

Amplitude = 3, Period = 360°, no shifts.

Plot key points: (0, 0), (90, 3), (180, 0), (270, -3), (360, 0)

Example : 

Sketch \( y = 2\sin(2x) – 1 \) for \( 0^\circ \le x \le 360^\circ \).

▶️ Answer/Explanation

Amplitude = 2, Period = \( \dfrac{360^\circ}{2} = 180^\circ \), Vertical shift = -1.

Key points for one period: (0, -1), (45, 1), (90, -1), (135, -3), (180, -1)

2. Cosine Function $y = \cos x$

Key Properties:

  • Amplitude: 1 (default)
  • Period: \( 360^\circ \) or \( 2\pi \) radians
  • Domain: All real numbers
  • Range: \( -1 \le y \le 1 \)
  • Shape: Starts at maximum (1), goes to 0, minimum (-1), back to 0, and repeats

Graph Key Points (in degrees):

General Form:

\( y = a \cos(bx + c) + d \)

  • \( |a| \) = amplitude
  • Period = \( \dfrac{360^\circ}{b} \) (or \( \dfrac{2\pi}{b} \) in radians)
  • \( c \) = phase shift (horizontal shift)
  • \( d \) = vertical shift

Example : 

Sketch \( y = 2\cos x \) for \( 0^\circ \le x \le 360^\circ \).

▶️ Answer/Explanation

Amplitude = 2, Period = 360°, no shifts.

Key points: (0, 2), (90, 0), (180, -2), (270, 0), (360, 1)

Example : 

Sketch \( y = -\cos(3x) + 2 \) for \( 0^\circ \le x \le 360^\circ \).

▶️ Answer/Explanation

Amplitude = 1, Reflection in x-axis, Period = \( \dfrac{360^\circ}{3} = 120^\circ \), Vertical shift = +2.

Key points for one cycle: (0, 1), (30, 2), (60, 3), (90, 2), (120, 1)

3. Tangent Function $y = \tan x$

Key Properties:

  • Amplitude: None (unbounded)
  • Period: \( 180^\circ \) or \( \pi \) radians
  • Domain: All real numbers except where \( \cos x = 0 \) (i.e., \( x = 90^\circ, 270^\circ, \dots \))
  • Range: \( (-\infty, \infty) \)
  • Asymptotes: At \( x = 90^\circ + n \cdot 180^\circ \) (or \( x = \dfrac{\pi}{2} + n\pi \))
  • Shape: Passes through origin, increases steeply, with vertical asymptotes

Graph Key Points (in degrees):

General Form:

\( y = a \tan(bx + c) + d \)

  • \( |a| \) = vertical stretch
  • Period = \( \dfrac{180^\circ}{b} \) (or \( \dfrac{\pi}{b} \) in radians)
  • \( c \) = horizontal shift (phase shift)
  • \( d \) = vertical shift

Example : 

Sketch \( y =4 \tan x \) for \( -180^\circ \le x \le 180^\circ \).

▶️ Answer/Explanation

Period = 180°, Asymptotes at \( x = \pm 90^\circ \), Passes through (0, 0).

Key points: (-90°, undefined), (0°, 0), (45°, 4), (90°, undefined), (135°, -4), (180°, 0).

Example : 

Sketch \( y = 2\tan(2x) \) for \( 0^\circ \le x \le 180^\circ \).

▶️ Answer/Explanation

Amplitude = None, Vertical stretch factor = 2, Period = \( \dfrac{180^\circ}{2} = 90^\circ \).

Asymptotes at \( x = 45^\circ, 135^\circ \).

Key points: (0, 0), (22.5°, 2), (45°, undefined), (67.5°, -2), (90°, 0).

Quick Recap Table:

FunctionPeriodRangeDomainAsymptotes
\( y = \sin x \)\( 360^\circ \) / \( 2\pi \)\([-1, 1]\)All real numbersNone
\( y = \cos x \)\( 360^\circ \) / \( 2\pi \)\([-1, 1]\)All real numbersNone
\( y = \tan x \)\( 180^\circ \) / \( \pi \)\((-\infty, \infty)\)All real numbers except \( x = 90^\circ + n \cdot 180^\circ \)\( x = 90^\circ + n \cdot 180^\circ \), \( n \in \mathbb{Z} \)

Solving Trigonometric Equations

Solving Trigonometric Equations

Trigonometric equations involve trigonometric functions like \( \sin x, \cos x, \tan x \) and require finding all possible angles within a given interval (commonly \( 0^\circ \leq x < 360^\circ \) or \( 0 \leq x < 2\pi \)).

General Steps:

  1. Isolate the trigonometric function (e.g., \( \sin x = \text{value} \)).
  2. Find the reference angle using inverse trig function.
  3. Determine all solutions in the specified interval based on the quadrant rules.
  4. Write the general solution if required (using \( +360^\circ k \) or \( +2\pi k \)).

Quadrant Rules:

  • \( \sin x > 0 \) in Quadrants I and II.
  • \( \cos x > 0 \) in Quadrants I and IV.
  • \( \tan x > 0 \) in Quadrants I and III.

Common Solutions:

  • \( \sin x = a \) ⇒ \( x = \alpha \) or \( 180^\circ – \alpha \).
  • \( \cos x = a \) ⇒ \( x = \alpha \) or \( 360^\circ – \alpha \).
  • \( \tan x = a \) ⇒ \( x = \alpha \) or \( 180^\circ + \alpha \).

 Example:

Solve \( \sin x = 0.5 \) for \( 0^\circ \le x < 360^\circ \).

▶️ Answer/Explanation

Step 1: Reference angle: \( \sin^{-1}(0.5) = 30^\circ \).

Step 2: \( \sin x \) is positive in Quadrants I and II.

Solutions: \( x = 30^\circ, 180^\circ – 30^\circ = 150^\circ \).

Final Answer: \( x = 30^\circ, 150^\circ \).

 Example:

Solve \( 2\cos x – 1 = 0 \) for \( 0^\circ \le x < 360^\circ \).

▶️ Answer/Explanation

Step 1: \( 2\cos x – 1 = 0 \Rightarrow \cos x = 0.5 \).

Step 2: Reference angle: \( \cos^{-1}(0.5) = 60^\circ \).

Step 3: \( \cos x \) is positive in Quadrants I and IV.

Solutions: \( x = 60^\circ, 360^\circ – 60^\circ = 300^\circ \).

Final Answer: \( x = 60^\circ, 300^\circ \).

 Example:

Solve \( \tan x = -1 \) for \( 0^\circ \le x < 360^\circ \).

▶️ Answer/Explanation

Step 1: Reference angle: \( \tan^{-1}(1) = 45^\circ \).

Step 2: \( \tan x \) is negative in Quadrants II and IV.

Solutions: \( x = 180^\circ – 45^\circ = 135^\circ, 360^\circ – 45^\circ = 315^\circ \).

Final Answer: \( x = 135^\circ, 315^\circ \).

Scroll to Top