Home / IB MYP 4-5 / IB MYP 4-5 Maths- Surds, roots and radicals, including simplifying – Study Notes

IB MYP 4-5 Maths- Surds, roots and radicals, including simplifying – Study Notes

IB MYP 4-5 Maths- Surds, roots and radicals, including simplifying- Study Notes - New Syllabus

IB MYP 4-5 Maths- Surds, roots and radicals, including simplifying – Study Notes

Standard

  • Surds, roots and radicals, including simplifying

    IB MYP 4-5 Maths- Surds, roots and radicals, including simplifying – Study Notes – All topics

     Roots and Radicals 

     Roots and Radicals 

    A radical is an expression that includes a root symbol (√). The most common radical is the square root \( \sqrt{x} \), but cube roots \( \sqrt[3]{x} \), fourth roots, etc. also exist.

    Mathematical RuleExplanation
    \( \sqrt{a^2} = |a| \)Square root of a square gives the absolute value
    \( \sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \)You can split roots across multiplication
    \( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)You can combine roots when dividing
    \( \sqrt[n]{x^m} = x^{\frac{m}{n}} \)Roots can be expressed using fractional powers
    • Radicand: The value inside the radical (e.g. in \( \sqrt{25} \), the radicand is 25).
    • Index: The small number indicating the type of root (e.g. 2 for square root, 3 for cube root).
    • Square root: Means “what number squared gives this value?”

    Always simplify roots where possible .

    Only square roots of perfect squares (like 1, 4, 9, 16, 25…) result in whole numbers.

    Example:

    Write \( \sqrt[3]{27} \) as a whole number and \( \sqrt{25} \) as a power.

    ▶️ Answer/Explanation

     Simplify roots

    \( \sqrt[3]{27} = 3 \) because \( 3^3 = 27 \)

    \( \sqrt{25} = 5 = 25^{\frac{1}{2}} \)

    Example:

    Simplify the following expression:

    $\left( 81^{\frac{1}{4}} \cdot \sqrt{50} \right) \div \sqrt{2}$

    ▶️ Answer/Explanation

    Convert fractional exponent to root

    \( 81^{\frac{1}{4}} = \sqrt[4]{81} = 3 \) (because \( 3^4 = 81 \))

    Simplify \( \sqrt{50} \)

    \( \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} \)

     Multiply the simplified parts

    \( 3 \cdot 5\sqrt{2} = 15\sqrt{2} \)

     Divide by \( \sqrt{2} \)

    \( \frac{15\sqrt{2}}{\sqrt{2}} = 15 \)

    Surds

    Surd

    A surd is a square root (or cube root, etc.) that cannot be simplified to a rational number. Surds are irrational numbers written in root form.

    Characteristics of a Surd:

    • It cannot be written as a fraction \( \frac{a}{b} \).
    • Its decimal form is non-terminating and non-repeating.
    • It is left in root form to express the exact value.

    Examples of Surds:

    • \( \sqrt{2},\ \sqrt{3},\ \sqrt{5},\ \sqrt{7} \)
    • \( \sqrt{11},\ \sqrt{13},\ \sqrt{17},\ \sqrt{19} \)
    • \( \sqrt[3]{2},\ \sqrt[3]{5},\ \sqrt[4]{7} \)

    These values cannot be written exactly as decimals or fractions, so we leave them as surds.

    Not Surds (Because They Simplify):

    • \( \sqrt{4} = 2 \)
    • \( \sqrt{9} = 3 \)
    • \( \sqrt{16} = 4 \)
    • \( \sqrt{\frac{1}{4}} = \frac{1}{2} \)

    These are not surds because they simplify to rational numbers.

    Example:

    Identify which of the following are surds:

    \( \sqrt{2},\ \sqrt{25},\ \sqrt{3},\ \frac{1}{2},\ \sqrt{7} \)

    ▶️ Answer/Explanation

     Simplify each root

    \( \sqrt{2} \) – cannot be simplified → surd 

    \( \sqrt{25} = 5 \) – rational → not a surd 

    \( \sqrt{3} \) – cannot be simplified → surd 

    \( \frac{1}{2} \) – rational → not a surd 

    \( \sqrt{7} \) – cannot be simplified → surd 

    Simplifying Surds

    To simplify a surd: Find square factors inside the root.

    Use the rule: \( \sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \)

    • \( \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \)
    • \( \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} \)

    Example:

    Simplify: \( \sqrt{72} \)

    ▶️ Answer/Explanation

    Break 72 into square × other

    \( \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2} \)

    Example:

    Simplify: \( \sqrt{98} \)

    ▶️ Answer/Explanation

     Break 98 into a square × another number

    \( \sqrt{98} = \sqrt{49 \cdot 2} = \sqrt{49} \cdot \sqrt{2} = 7\sqrt{2} \)

    Adding and Subtracting Surds

    Rule: You can only add or subtract like surds (same root).

    • \( 3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2} \)
    • \( 7\sqrt{3} – 2\sqrt{3} = 5\sqrt{3} \)
    • \( 2\sqrt{5} + 3\sqrt{7} \) cannot be simplified

    Example:

    Simplify: \( 4\sqrt{3} + 2\sqrt{12} \)

    ▶️ Answer/Explanation

     Simplify \( \sqrt{12} \)

    \( \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \)

    Now add like terms

    \( 4\sqrt{3} + 2(2\sqrt{3}) = 4\sqrt{3} + 4\sqrt{3} = 8\sqrt{3} \)

    Example:

    Simplify: \( 3\sqrt{5} + \sqrt{20} – \sqrt{45} \)

    ▶️ Answer/Explanation

    Simplify each surd first

    \( \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5} \)

    \( \sqrt{45} = \sqrt{9 \cdot 5} = 3\sqrt{5} \)

    Now combine like terms:

    \( 3\sqrt{5} + 2\sqrt{5} – 3\sqrt{5} = 2\sqrt{5} \)

     Multiplying and Dividing Surds

    Multiplication Rule: \( \sqrt{a} \cdot \sqrt{b} = \sqrt{ab} \)

    Division Rule: \( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)

    Example:

    Simplify: \( \sqrt{5} \cdot \sqrt{20} \)

    ▶️ Answer/Explanation

     Multiply under the root

    \( \sqrt{5 \cdot 20} = \sqrt{100} = 10 \)

    Example:

    Simplify: \( \frac{\sqrt{48}}{\sqrt{3}} \)

    ▶️ Answer/Explanation

     Combine under one root

    \( \frac{\sqrt{48}}{\sqrt{3}} = \sqrt{\frac{48}{3}} = \sqrt{16} = 4 \)

     Rationalizing the Denominator

    Why: Do not leave a root in the denominator.

    Rule: Multiply numerator and denominator by the surd.

    Formula: \( \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} \)

    Example:

    Rationalize: \( \frac{5}{\sqrt{3}} \)

    ▶️ Answer/Explanation

     Multiply numerator and denominator by \( \sqrt{3} \)

    \( \frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3} \)

    Example:

    Rationalize the denominator: $ \frac{5}{2 + \sqrt{3}}$

    ▶️ Answer/Explanation

    Multiply numerator and denominator by the conjugate of the denominator

    Conjugate of \( 2 + \sqrt{3} \) is \( 2 – \sqrt{3} \)

     Multiply using difference of squares

    Numerator: \( 5(2 – \sqrt{3}) = 10 – 5\sqrt{3} \)
    Denominator: \( (2 + \sqrt{3})(2 – \sqrt{3}) = 4 – 3 = 1 \)

     Simplify

    \( \frac{10 – 5\sqrt{3}}{1} = 10 – 5\sqrt{3} \)

    Surds in Algebra

    You may have to expand and simplify algebraic expressions involving surds.

    • \( (2 + \sqrt{3})(2 – \sqrt{3}) \) – Use difference of squares
    • \( (x + \sqrt{5})^2 = x^2 + 2x\sqrt{5} + 5 \)

    Example:

    Expand and simplify: \( (3 + \sqrt{2})(3 – \sqrt{2}) \)

    ▶️ Answer/Explanation

     Use identity: \( (a + b)(a – b) = a^2 – b^2 \)

    \( 3^2 – (\sqrt{2})^2 = 9 – 2 = 7 \)

    Example:

    Expand and simplify: \( (2\sqrt{3} + \sqrt{12})(\sqrt{3} – \sqrt{27}) \)

    ▶️ Answer/Explanation

    Simplify surds first:

    \( \sqrt{12} = 2\sqrt{3} \), \( \sqrt{27} = 3\sqrt{3} \)

    Now the expression becomes:

    \( (2\sqrt{3} + 2\sqrt{3})(\sqrt{3} – 3\sqrt{3}) = 4\sqrt{3} \cdot (-2\sqrt{3}) \)

    Multiply:

    \( 4\sqrt{3} \cdot -2\sqrt{3} = -8(\sqrt{3})^2 = -8 \cdot 3 = -24 \)

    Example:

    Simplify the following expression fully:

    $ \frac{2\sqrt{18} + \sqrt{50}}{\sqrt{2}} + (3 + \sqrt{3})^2$

    ▶️ Answer/Explanation

    Simplify all surds

    \( \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \)

    \( \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} \)

     Substitute simplified surds into expression

    \( \frac{2(3\sqrt{2}) + 5\sqrt{2}}{\sqrt{2}} = \frac{6\sqrt{2} + 5\sqrt{2}}{\sqrt{2}} = \frac{11\sqrt{2}}{\sqrt{2}} = 11 \)

    Expand the squared binomial

    \( (3 + \sqrt{3})^2 = 3^2 + 2 \cdot 3 \cdot \sqrt{3} + (\sqrt{3})^2 = 9 + 6\sqrt{3} + 3 = 12 + 6\sqrt{3} \)

    Add all parts together

    \( 11 + 12 + 6\sqrt{3} = 23 + 6\sqrt{3} \)

    Scroll to Top