IB Mathematics AHL 3.13 Definition and calculation of the scalar product-AI HL Paper 1- Exam Style Questions- New Syllabus
(a) Consider the vectors \(\mathbf{a} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}\), \(\mathbf{b} = -3\mathbf{j} + 4\mathbf{k}\).
(i) Find the cosine of the angle between vectors \(\mathbf{a}\) and \(\mathbf{b}\).
(ii) Find \(\mathbf{a} \times \mathbf{b}\).
(iii) Hence find the Cartesian equation of the plane \(\Pi\) containing the vectors \(\mathbf{a}\) and \(\mathbf{b}\) and passing through the point \((1, 1, -1)\).
(iv) The plane \(\Pi\) intersects the \(x\)-\(y\) plane in the line \(l\). Find the area of the finite triangular region enclosed by \(l\), the \(x\)-axis, and the \(y\)-axis.
(b) Given two vectors \(\mathbf{p}\) and \(\mathbf{q}\),
(i) Show that \(\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}|^2\).
(ii) Hence, or otherwise, show that \(|\mathbf{p} + \mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\).
(iii) Deduce that \(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\).
▶️ Answer/Explanation
(a)(i)
Vectors: \(\mathbf{a} = \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}\), \(\mathbf{b} = \begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix}\)
Dot product: \(\mathbf{a} \cdot \mathbf{b} = (6)(0) + (3)(-3) + (2)(4) = -1\)
Magnitudes: \(|\mathbf{a}| = \sqrt{6^2 + 3^2 + 2^2} = 7\), \(|\mathbf{b}| = \sqrt{0^2 + (-3)^2 + 4^2} = 5\)
Cosine: \(\cos \theta = \frac{-1}{7 \times 5} = -\frac{1}{35}\)
Marks: (M1) for dot product formula, (A1) for dot product, (A1) for magnitudes, (A1) for cosine
Result: \(\cos \theta = -\frac{1}{35}\) [4]
(a)(ii)
Cross product: \(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 3 & 2 \\ 0 & -3 & 4 \end{vmatrix}\)
\(\mathbf{i}\): \(3 \times 4 – 2 \times (-3) = 18\)
\(\mathbf{j}\): \(-(6 \times 4 – 2 \times 0) = -24\)
\(\mathbf{k}\): \(6 \times (-3) – 3 \times 0 = -18\)
Result: \(\mathbf{a} \times \mathbf{b} = 18\mathbf{i} – 24\mathbf{j} – 18\mathbf{k}\)
Marks: (M1) for cross product setup, (A1) for result
Result: \(18\mathbf{i} – 24\mathbf{j} – 18\mathbf{k}\) [2]
(a)(iii)
Normal: \(\mathbf{n} = \mathbf{a} \times \mathbf{b} = \begin{pmatrix} 18 \\ -24 \\ -18 \end{pmatrix}\)
Point: \(\mathbf{p} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}\)
Plane: \(\mathbf{r} \cdot \mathbf{n} = \mathbf{p} \cdot \mathbf{n}\)
Compute: \(\mathbf{p} \cdot \mathbf{n} = (1)(18) + (1)(-24) + (-1)(-18) = 12\)
Equation: \(18x – 24y – 18z = 12 \implies 3x – 4y – 3z = 2\)
Marks: (M1) for plane equation setup, (A1) for equation
Result: \(3x – 4y – 3z = 2\) [2]
(a)(iv)
Set \(z = 0\): \(3x – 4y = 2\)
Intercepts: \(x = \frac{2}{3}\), \(y = -\frac{1}{2}\)
Area: \(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{6}\)
Marks: (M1) for \(z = 0\), (A1) for intercepts, (A1) for area
Result: Area = \(\frac{1}{6}\) [3]
(b)(i)
Dot product: \(\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}| |\mathbf{p}| \cos 0 = |\mathbf{p}|^2\)
Marks: (M1) for dot product, (A1) for result
Result: \(\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}|^2\) [2]
(b)(ii)
Compute: \(|\mathbf{p} + \mathbf{q}|^2 = (\mathbf{p} + \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q})\)
Expand: \(|\mathbf{p}|^2 + \mathbf{p} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{p} + |\mathbf{q}|^2\)
Simplify: \(|\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\)
Marks: (M1) for expansion, (A1) for terms, (A1) for result
Result: \(|\mathbf{p} + \mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\) [3]
(b)(iii) METHOD 1
Use: \(\mathbf{p} \cdot \mathbf{q} \leq |\mathbf{p}| |\mathbf{q}|\)
From (ii): \(|\mathbf{p} + \mathbf{q}|^2 \leq |\mathbf{p}|^2 + 2|\mathbf{p}| |\mathbf{q}| + |\mathbf{q}|^2\)
Take square root: \(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\)
(b)(iii) METHOD 2
A triangle with vectors \(\mathbf{p}\), \(\mathbf{q}\), \(\mathbf{p} + \mathbf{q}\))
since the sum of any two sides of a triangle is greater than the third side, Triangle inequality: \(|\mathbf{p}| + |\mathbf{q}| \geq |\mathbf{p} + \mathbf{q}|\)
Equality when collinear
Conclusion: \(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\)
Marks: (M1) for inequality, (A1) for application, (A1) for deduction
Result: \(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\) [3]
The diagram shows a circle with centre O. The points A, B, C lie on the circumference of the circle and [AC] is a diameter.
Diagram description: The image illustrates a circle with centre O, points A, B, C on the circumference, and AC as a diameter. It shows \(\overrightarrow{\text{OC}} = -\mathbf{a}\) (C opposite A across O) and \(|\mathbf{a}| = |\mathbf{b}| = r\) (radius), with line segments AB and CB forming \(\angle \text{ABC}\) at point B. Note: If the image does not load, it is due to the URL being inaccessible.
Let \(\overrightarrow{\text{OA}} = \mathbf{a}\) and \(\overrightarrow{\text{OB}} = \mathbf{b}\).
(a) Write down expressions for \(\overrightarrow{\text{AB}}\) and \(\overrightarrow{\text{CB}}\) in terms of the vectors \(\mathbf{a}\) and \(\mathbf{b}\).
(b) Hence prove that angle \(\angle \text{ABC}\) is a right angle.
▶️ Answer/Explanation
(a)
Since AC is a diameter, \(\overrightarrow{\text{OC}} = -\mathbf{a}\)
\(\overrightarrow{\text{AB}} = \overrightarrow{\text{OB}} – \overrightarrow{\text{OA}} = \mathbf{b} – \mathbf{a}\)
\(\overrightarrow{\text{CB}} = \overrightarrow{\text{OB}} – \overrightarrow{\text{OC}} = \mathbf{b} + \mathbf{a}\)
Marks: (A1) for \(\overrightarrow{\text{AB}}\), (A1) for \(\overrightarrow{\text{CB}}\)
Result: \(\overrightarrow{\text{AB}} = \mathbf{b} – \mathbf{a}\), \(\overrightarrow{\text{CB}} = \mathbf{a} + \mathbf{b}\) [2]
(b)
Dot product: \(\overrightarrow{\text{AB}} \cdot \overrightarrow{\text{CB}} = (\mathbf{b} – \mathbf{a}) \cdot (\mathbf{a} + \mathbf{b})\)
Expand: \(\mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} – \mathbf{a} \cdot \mathbf{a} – \mathbf{a} \cdot \mathbf{b}\)
Simplify: \(|\mathbf{b}|^2 – |\mathbf{a}|^2\)
Since \(|\mathbf{a}| = |\mathbf{b}|\) (radius of circle), \(|\mathbf{b}|^2 – |\mathbf{a}|^2 = 0\)
Conclusion: \(\overrightarrow{\text{AB}} \perp \overrightarrow{\text{CB}}\), so \(\angle \text{ABC} = 90^\circ\)
Marks: (M1) for dot product, (A1) for simplification, (R1) for conclusion
Result: \(\angle \text{ABC}\) is a right angle [3]