Home / IBDP Math AI:Topic:AHL 5.15:Slope fields and their diagrams.-IB style Questions HL Paper 1

IBDP Math AI:Topic:AHL 5.15:Slope fields and their diagrams.-IB style Questions HL Paper 1

Question

Consider the differential equation:

\[ \frac{dy}{dx} = xy – 1 \]

Given that \( y = 2 \) when \( x = 1 \), use Euler’s method with step size \( h = 0.1 \) to find the approximate value of \( y \) when \( x = 1.5 \).

▶️ Answer/ExplanationDetailed Solution

Step 1: Euler’s Method Formula

The iterative formula for Euler’s method is:

\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \]

where \( f(x, y) = xy – 1 \) and \( h = 0.1 \).

Step 2: Compute Successive Approximations

Step\( x_n \)\( y_n \)\( f(x_n, y_n) \)\( y_{n+1} \)
11.02.0000(\(1 \times 2 – 1 = 1\))\(2.0000 + 0.1(1) = 2.1000\)
21.12.1000(\(1.1 \times 2.1 – 1 = 1.31\))\(2.1000 + 0.1(1.31) = 2.2310\)
31.22.2310(\(1.2 \times 2.231 – 1 = 1.6772\))\(2.2310 + 0.1(1.6772) = 2.3987\)
41.32.3987(\(1.3 \times 2.3987 – 1 = 2.1183\))\(2.3987 + 0.1(2.1183) = 2.6105\)
51.42.6105(\(1.4 \times 2.6105 – 1 = 2.6547\))\(2.6105 + 0.1(2.6547) = 2.8760\)

Final Answer: When \( x = 1.5 \), \( y \approx 2.88 \) (rounded from 2.87603).

……………………………….Markscheme……………………………….

  • Application of Euler’s method: Correct iterative formula used.
  • Step-by-step calculations: Each step follows Euler’s formula.
  • Final approximation: \( y \approx 2.88 \).
Scroll to Top