IBDP Maths AHL 1.11 Partial fractions AA HL Paper 2- Exam Style Questions- New Syllabus
Determine the partial fraction decomposition of the following expression:
\[\frac{3x^2 + 7x + 28}{x(x^2 + x + 7)}\]
▶️ Answer/Explanation
The denominator is \( x(x^2 + x + 7) \), where \( x \) is a linear factor and \( x^2 + x + 7 \) is an irreducible quadratic. The partial fraction decomposition is:
\[ \frac{3x^2 + 7x + 28}{x(x^2 + x + 7)} = \frac{A}{x} + \frac{Bx + C}{x^2 + x + 7} \]
The least common denominator (LCD) is \( x(x^2 + x + 7) \). Combine the fractions:
\[ \frac{A(x^2 + x + 7) + (Bx + C)(x)}{x(x^2 + x + 7)} \]
Set the numerators equal:
\[ 3x^2 + 7x + 28 = A(x^2 + x + 7) + (Bx + C)(x) \]
Expand the right-hand side:
\[ A(x^2 + x + 7) + (Bx + C)(x) = Ax^2 + Ax + 7A + Bx^2 + Cx = (A + B)x^2 + (A + C)x + 7A \]
Equate coefficients of corresponding powers of \( x \):
\[ (A + B)x^2 + (A + C)x + 7A = 3x^2 + 7x + 28 \]
– Coefficient of \( x^2 \): \( A + B = 3 \)
– Coefficient of \( x \): \( A + C = 7 \)
– Constant: \( 7A = 28 \)
Solve the system of equations:
From \( 7A = 28 \), we get \( A = 4 \).
Substitute \( A = 4 \):
– \( 4 + B = 3 \Rightarrow B = -1 \)
– \( 4 + C = 7 \Rightarrow C = 3 \)
The partial fraction decomposition is:
\[ \frac{3x^2 + 7x + 28}{x(x^2 + x + 7)} = \frac{4}{x} + \frac{-x + 3}{x^2 + x + 7} \]
\[ \boxed{\frac{4}{x} + \frac{3 – x}{x^2 + x + 7}} \]