IBDP Maths AHL 1.11 Partial fractions AA HL Paper 3- Exam Style Questions- New Syllabus
This question investigates some applications of differential equations to modeling population growth.
One model for population growth is to assume that the rate of change of the population is proportional to the population, i.e. \( \frac{\mathrm{d} P}{\mathrm{~d} t} = k P \), where \( k \in \mathbb{R} \), \( t \) is the time (in years), and \( P \) is the population.
The initial population is 1000.
Given that \( k = 0.003 \), use your answer from part (a) to find
Consider now the situation when \( k \) is not a constant, but a function of time.
Given that \( k = 0.003 + 0.002 t \), find
Another model for population growth assumes
- there is a maximum value for the population, \( L \).
- that \( k \) is not a constant, but is proportional to \( \left(1 – \frac{P}{L}\right) \).
(a) Show that the general solution of this differential equation is \( P = A e^{k t} \), where \( A \in \mathbb{R} \). [5]
(b) (i) The population after 10 years. [2]
(b) (ii) The number of years it will take for the population to triple. [2]
(b) (iii) \( \lim_{t \to \infty} P \). [1]
(c) (i) The solution of the differential equation, giving your answer in the form \( P = f(t) \). [5]
(c) (ii) The number of years it will take for the population to triple. [4]
(d) Show that \( \frac{\mathrm{d} P}{\mathrm{~d} t} = \frac{m}{L} P (L – P) \), where \( m \in \mathbb{R} \). [2]
(e) Solve the differential equation \( \frac{\mathrm{d} P}{\mathrm{~d} t} = \frac{m}{L} P (L – P) \), giving your answer in the form \( P = g(t) \). [10]
(f) Given that the initial population is 1000, \( L = 10000 \), and \( m = 0.003 \), find the number of years it will take for the population to triple. [4]
▶️ Answer/Explanation
(a) Show that the general solution of \( \frac{\mathrm{d} P}{\mathrm{~d} t} = k P \) is \( P = A e^{k t} \):
Separate variables:
\[ \frac{1}{P} \mathrm{d} P = k \mathrm{d} t \quad (M1) \]
Integrate both sides:
\[ \int \frac{1}{P} \mathrm{d} P = \int k \mathrm{d} t \quad (A1) \]
\[ \ln P = k t + c \quad (A1)(A1) \]
Exponentiate:
\[ P = e^{k t + c} \quad (A1) \]
\[ P = A e^{k t} \text{, where } A = e^c \quad (AG) \]
[5 marks]
(b) (i) Population after 10 years:
Initial condition: \( t = 0 \), \( P = 1000 \):
\[ P = A e^{0.003 t} \]
\[ 1000 = A e^{0} \implies A = 1000 \quad (A1) \]
At \( t = 10 \):
\[ P(10) = 1000 e^{0.003 \cdot 10} = 1000 e^{0.03} \approx 1030 \]
(A1)
[2 marks]
(b) (ii) Number of years for population to triple:
Triple the initial population: \( P = 3000 \).
\[ 3000 = 1000 e^{0.003 t} \quad (M1) \]
\[ e^{0.003 t} = 3 \]
\[ 0.003 t = \ln 3 \]
\[ t = \frac{\ln 3}{0.003} \approx 366 \text{ years} \quad (A1) \]
[2 marks]
(b) (iii) \( \lim_{t \to \infty} P \):
\[ P = 1000 e^{0.003 t} \]
As \( t \to \infty \), \( e^{0.003 t} \to \infty \), so:
\[ \lim_{t \to \infty} P = \infty \quad (A1) \]
[1 mark]
(c) (i) Solution of \( \frac{\mathrm{d} P}{\mathrm{~d} t} = (0.003 + 0.002 t) P \):
Separate variables:
\[ \int \frac{1}{P} \mathrm{d} P = \int (0.003 + 0.002 t) \mathrm{d} t \quad (M1) \]
\[ \ln P = 0.003 t + 0.001 t^2 + c \quad (A1)(A1) \]
\[ P = e^{0.003 t + 0.001 t^2 + c} \quad (A1) \]
Initial condition: \( t = 0 \), \( P = 1000 \):
\[ 1000 = e^c \quad (M1) \]
\[ P = 1000 e^{0.003 t + 0.001 t^2} \]
[5 marks]
(c) (ii) Number of years for population to triple:
\[ 3000 = 1000 e^{0.003 t + 0.001 t^2} \quad (M1) \]
\[ e^{0.003 t + 0.001 t^2} = 3 \]
\[ 0.001 t^2 + 0.003 t = \ln 3 \quad (A1) \]
Solve the quadratic equation \( 0.001 t^2 + 0.003 t – \ln 3 = 0 \):
Use quadratic formula or GDC: \( t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} \), where \( a = 0.001 \), \( b = 0.003 \), \( c = -\ln 3 \approx -1.098612 \).
\[ t \approx 31.7 \text{ years} \quad (M1)(A1) \]
[4 marks]
(d) Show that \( \frac{\mathrm{d} P}{\mathrm{~d} t} = \frac{m}{L} P (L – P) \):
Given:
\[ k = m \left(1 – \frac{P}{L}\right) \quad (A1) \]
Substitute into \( \frac{\mathrm{d} P}{\mathrm{~d} t} = k P \):
\[ \frac{\mathrm{d} P}{\mathrm{~d} t} = m \left(1 – \frac{P}{L}\right) P \]
\[ = \frac{m}{L} P (L – P) \quad (A1)(AG) \]
[2 marks]
(e) Solve \( \frac{\mathrm{d} P}{\mathrm{~d} t} = \frac{m}{L} P (L – P) \):
Separate variables:
\[ \int \frac{1}{P (L – P)} \mathrm{d} P = \int \frac{m}{L} \mathrm{d} t \quad (M1) \]
Use partial fractions:
\[ \frac{1}{P (L – P)} = \frac{A}{P} + \frac{B}{L – P} \quad (M1) \]
\[ 1 \equiv A (L – P) + B P \quad (A1) \]
Solve for \( A \) and \( B \):
\[ A = \frac{1}{L}, \quad B = \frac{1}{L} \quad (A1) \]
\[ \frac{1}{L} \int \left( \frac{1}{P} + \frac{1}{L – P} \right) \mathrm{d} P = \int \frac{m}{L} \mathrm{d} t \]
\[ \frac{1}{L} \left( \ln P – \ln (L – P) \right) = \frac{m}{L} t + c \]
\[ \ln \left( \frac{P}{L – P} \right) = m t + d \text{, where } d = c L \]
\[ \frac{P}{L – P} = C e^{m t} \text{, where } C = e^d \quad (A1) \]
Solve for \( P \):
\[ P (1 + C e^{m t}) = C L e^{m t} \quad (M1) \]
\[ P = \frac{C L e^{m t}}{1 + C e^{m t}} \quad (A1) \]
Alternatively:
\[ P = \frac{L}{D e^{-m t} + 1} \text{, where } D = \frac{1}{C} \]
[10 marks]
(f) Number of years to triple with \( P_0 = 1000 \), \( L = 10000 \), \( m = 0.003 \):
Initial condition: \( t = 0 \), \( P = 1000 \):
\[ 1000 = \frac{10000}{D + 1} \quad (M1) \]
\[ D + 1 = 10 \implies D = 9 \quad (A1) \]
Triple: \( P = 3000 \):
\[ 3000 = \frac{10000}{9 e^{-0.003 t} + 1} \quad (M1) \]
\[ 9 e^{-0.003 t} + 1 = \frac{10000}{3000} = \frac{10}{3} \]
\[ 9 e^{-0.003 t} = \frac{7}{3} \]
\[ e^{-0.003 t} = \frac{7}{27} \]
\[ -0.003 t = \ln \left( \frac{7}{27} \right) \]
\[ t = \frac{\ln \left( \frac{27}{7} \right)}{0.003} \approx 450 \text{ years} \quad (A1) \]
[4 marks]