IBDP Maths AHL 1.13 Modulus-argument in polar form AA HL Paper 3- Exam Style Questions- New Syllabus
In this question, you will be investigating the family of functions of the form \( f(x) = x^n e^{-x} \).
Consider the family of functions \( f_n(x) = x^n e^{-x} \), where \( x \geq 0 \) and \( n \in \mathbb{Z}^+ \).
When \( n = 1 \), the function \( f_1(x) = x e^{-x} \) where \( x \geq 0 \).
(a) Sketch the graph of \( y = f_1(x) \), stating the coordinates of the local maximum point. [4]
(b) Show that the area of the region bounded by the graph \( y = f_1(x) \), the x-axis, and the line \( x = b \), where \( b > 0 \), is given by \( \frac{e^b – b – 1}{e^b} \). [5]
You may assume that the total area, \( A_n \), of the region between the graph \( y = f_n(x) \) and the x-axis can be written as \( A_n = \int_0^\infty f_n(x) \, dx \) and is given by \( \lim_{b \to \infty} \int_0^b f_n(x) \, dx \).
(c) (i) Use l’Hôpital’s rule to find \( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \). You may assume that the condition for applying l’Hôpital’s rule has been met. [3]
(c) (ii) Hence write down the value of \( A_1 \). [1]
You are given that \( A_2 = 2 \) and \( A_3 = 6 \).
(d) Use your graphic display calculator, and an appropriate value for the upper limit, to determine the value of
(i) \( A_4 \); [2]
(ii) \( A_5 \). [2]
(e) Suggest an expression for \( A_n \) in terms of \( n \), where \( n \in \mathbb{Z}^+ \). [1]
(f) Use mathematical induction to prove your conjecture from part (e). You may assume that, for any value of \( m \), \( \lim_{x \to \infty} x^m e^{-x} = 0 \). [6]
▶️ Answer/Explanation
(a) Sketch the graph of \( y = f_1(x) \):
Coordinates of local maximum: \( (1, \frac{1}{e}) \) or \( (1, 0.368) \quad (A1) \).
Graph passes through the origin \( (0, 0) \quad (A1) \).
Correct domain \( x \geq 0 \quad (A1) \).
Correct shape with single maximum and asymptotic behavior to x-axis (equation not required) or point of inflection \quad (A1) \).
[4 marks]
(b) Show the area is \( \frac{e^b – b – 1}{e^b} \):
Area = \( \int_0^b x e^{-x} \, dx \quad (M1) \).
Use integration by parts, let \( u = x \), \( dv = e^{-x} \, dx \):
\[ du = dx, \quad v = -e^{-x} \quad (A1) \]
\[ \int x e^{-x} \, dx = x (-e^{-x}) – \int (-e^{-x}) \, dx \]
\[ = -x e^{-x} + \int e^{-x} \, dx \quad (A1) \]
\[ = -x e^{-x} – e^{-x} + c \quad (A1) \]
Evaluate from 0 to \( b \):
\[ \left[ -x e^{-x} – e^{-x} \right]_0^b \quad (M1) \]
\[ = \left( -b e^{-b} – e^{-b} \right) – \left( 0 – e^0 \right) \]
\[ = -b e^{-b} – e^{-b} + 1 \]
\[ = \frac{-b – 1}{e^b} + 1 \]
\[ = \frac{e^b – b – 1}{e^b} \quad (A1)(AG) \]
[5 marks]
(c) (i) Use l’Hôpital’s rule for \( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \):
Form is \( \frac{\infty}{\infty} \), apply l’Hôpital’s rule (M1):
\[ \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} = \lim_{b \to \infty} \frac{e^b – 1}{e^b} \quad (A1) \]
Still \( \frac{\infty}{\infty} \), apply again:
\[ \lim_{b \to \infty} \frac{e^b}{e^b} = 1 \quad (A1) \]
[3 marks]
(c) (ii) Value of \( A_1 \):
\[ A_1 = \lim_{b \to \infty} \int_0^b x e^{-x} \, dx = \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} = 1 \quad (A1) \]
[1 mark]
(d) (i) Value of \( A_4 \):
Correct integral \( \int_0^b x^4 e^{-x} \, dx \) with large \( b \quad (M1) \).
\[ A_4 = 24 \quad (A1) \]
[2 marks]
(d) (ii) Value of \( A_5 \):
Correct integral \( \int_0^b x^5 e^{-x} \, dx \) with large \( b \quad (M1) \).
\[ A_5 = 120 \quad (A1) \]
[2 marks]
(e) Suggest expression for \( A_n \):
\[ A_n = n! \quad (A1) \]
[1 mark]
(f) Prove \( A_n = n! \) by induction:
Base case (\( n = 1 \)):
\[ A_1 = 1 = 1! \quad (A1) \]
So true for \( n = 1 \).
Assume true for \( n = k \): \( A_k = \int_0^\infty x^k e^{-x} \, dx = k! \quad (M1) \).
Prove for \( n = k + 1 \):
\[ A_{k+1} = \int_0^\infty x^{k+1} e^{-x} \, dx \]
Integrate by parts, let \( u = x^{k+1} \), \( dv = e^{-x} \, dx \):
\[ du = (k + 1) x^k \, dx, \quad v = -e^{-x} \quad (A1) \]
\[ \int x^{k+1} e^{-x} \, dx = x^{k+1} (-e^{-x}) – \int (-e^{-x}) (k + 1) x^k \, dx \quad (M1) \]
\[ = -x^{k+1} e^{-x} + (k + 1) \int x^k e^{-x} \, dx \]
Evaluate from 0 to \( \infty \):
\[ \left[ -x^{k+1} e^{-x} \right]_0^\infty + (k + 1) \int_0^\infty x^k e^{-x} \, dx \quad (A1) \]
Using \( \lim_{x \to \infty} x^{k+1} e^{-x} = 0 \):
\[ \left[ 0 – 0 \right] + (k + 1) A_k \]
By assumption, \( A_k = k! \):
\[ A_{k+1} = (k + 1) k! = (k + 1)! \quad (A1) \]
Since true for \( n = 1 \) and if true for \( n = k \), then true for \( n = k + 1 \), by induction, \( A_n = n! \) for all \( n \in \mathbb{Z}^+ \quad (R1) \).
[6 marks]