IB Mathematics AHL 2.14 Odd and even functions AA HL Paper 3
Consider the functions \( f, g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \) defined by
\[ f((x, y)) = (x + y, x – y) \quad \text{and} \quad g((x, y)) = (xy, x + y). \]
(a)(i) Find \( (f \circ g)((x, y)) \). [3]
(a)(ii) Find \( (g \circ f)((x, y)) \). [2]
(b) State with a reason whether or not \( f \) and \( g \) commute. [1]
(c) Find the inverse of \( f \). [3]
▶️ Answer/Explanation
(a)(i) Composition \( (f \circ g)((x, y)) \):
\[ (f \circ g)((x, y)) = f(g((x, y))) = f((xy, x + y)) \quad (M1) \]
\[ f((xy, x + y)) = (xy + (x + y), xy – (x + y)) = (xy + x + y, xy – x – y) \quad (A1)(A1) \]
[3 marks]
(a)(ii) Composition \( (g \circ f)((x, y)) \):
\[ (g \circ f)((x, y)) = g(f((x, y))) = g((x + y, x – y)) \quad (M1) \]
\[ g((x + y, x – y)) = ((x + y)(x – y), (x + y) + (x – y)) = (x^2 – y^2, 2x) \quad (A1) \]
[2 marks]
(b) Commutativity of \( f \) and \( g \):
No, because \( f \circ g \neq g \circ f \quad (R1) \)
Note: Accept a counterexample, e.g., evaluating \( (f \circ g)((1, 1)) \neq (g \circ f)((1, 1)) \).
[1 mark]
(c) Inverse of \( f \):
\[ f((x, y)) = (a, b) \implies (x + y, x – y) = (a, b) \quad (M1) \]
Solve the system:
\[ \begin{cases} x + y = a \\ x – y = b \end{cases} \quad (M1) \]
\[ x = \frac{a + b}{2}, \quad y = \frac{a – b}{2} \quad (A1) \]
Thus, the inverse is:
\[ f^{-1}((x, y)) = \left( \frac{x + y}{2}, \frac{x – y}{2} \right) \quad (A1) \]
[3 marks]