IB Mathematics AHL 3.10 Compound angle identities AA HL Paper 3- Exam Style Questions
This question investigates the sum of sine and cosine functions.
The expression \( 3 \sin x + 4 \cos x \) can be written in the form \( A \cos(B x + C) + D \), where \( A, B \in \mathbb{R}^+ \), \( C, D \in \mathbb{R} \), and \( -\pi < C \leq \pi \).
The expression \( 5 \sin x + 12 \cos x \) can be written in the form \( A \cos(B x + C) + D \), where \( A, B \in \mathbb{R}^+ \), \( C, D \in \mathbb{R} \), and \( -\pi < C \leq \pi \).
In general, the expression \( a \sin x + b \cos x \) can be written in the form \( A \cos(B x + C) + D \), where \( a, b, A, B \in \mathbb{R}^+ \), \( C, D \in \mathbb{R} \), and \( -\pi < C \leq \pi \).
The expression \( a \sin x + b \cos x \) can also be written as \( \sqrt{a^2 + b^2} \left( \frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right) \).
Let \( \frac{a}{\sqrt{a^2 + b^2}} = \sin \theta \).
(a) (i) Sketch the graph of \( y = 3 \sin x + 4 \cos x \), for \( -2 \pi \leq x \leq 2 \pi \). [1]
(ii) Write down the amplitude of this graph. [1]
(iii) Write down the period of this graph. [1]
(b) (i) Use your answers from part (a) to write down the value of \( A \), \( B \), and \( D \). [1]
(ii) Find the value of \( C \). [2]
(c) (i) Find \( \arctan \frac{3}{4} \), giving the answer to 3 significant figures. [1]
(ii) Comment on your answer to part (c)(i). [1]
(d) By considering the graph of \( y = 5 \sin x + 12 \cos x \), find the value of \( A \), \( B \), \( C \), and \( D \). [5]
(e) Conjecture an expression, in terms of \( a \) and \( b \), for:
(i) \( A \); [1]
(ii) \( B \); [1]
(iii) \( C \); [1]
(iv) \( D \). [1]
(f) (i) Show that \( \frac{b}{\sqrt{a^2 + b^2}} = \cos \theta \). [2]
(ii) Show that \( \frac{a}{b} = \tan \theta \). [1]
(g) Hence prove your conjectures in part (e). [6]
▶️ Answer/Explanation
(a) (i) Sketch of \( y = 3 \sin x + 4 \cos x \):
Correct graph: (A1)
[1 mark]
(a) (ii) Amplitude:
\( 5 \quad (A1) \)
[1 mark]
(a) (iii) Period:
\( 2 \pi \quad (A1) \)
[1 mark]
(b) (i) Values of \( A \), \( B \), and \( D \):
\( A = 5, B = 1, D = 0 \quad (A1) \)
[1 mark]
(b) (ii) Value of \( C \):
Maximum at \( x = 0.644 \): (M1)
So \( C = -0.644 \quad (A1) \)
[2 marks]
(c) (i) Value of \( \arctan \frac{3}{4} \):
\( 0.644 \quad (A1) \)
[1 mark]
(c) (ii) Comment:
It appears that \( C = -\arctan \frac{3}{4} \): (A1)
[1 mark]
(d) Values of \( A \), \( B \), \( C \), and \( D \) for \( y = 5 \sin x + 12 \cos x \):
\[ A = 13 \quad (A1) \]
\[ B = 1 \text{ and } D = 0 \quad (A1) \]
Maximum at \( x = 0.395 \): (M1)
\[ C = -0.395 \quad (=-\arctan \frac{5}{12}) \quad (A1) \]
[5 marks]
(e) (i) Conjecture for \( A \):
\[ A = \sqrt{a^2 + b^2} \quad (A1) \]
[1 mark]
(e) (ii) Conjecture for \( B \):
\[ B = 1 \quad (A1) \]
[1 mark]
(e) (iii) Conjecture for \( C \):
\[ C = -\arctan \frac{a}{b} \quad (A1) \]
[1 mark]
(e) (iv) Conjecture for \( D \):
\[ D = 0 \quad (A1) \]
[1 mark]
(f) (i) Show \( \frac{b}{\sqrt{a^2 + b^2}} = \cos \theta \):
Either use a right triangle and Pythagoras’ theorem to show the missing side length is \( b \): (M1)(A1)
Or use \( \sin^2 \theta + \cos^2 \theta = 1 \), leading to the required result: (M1)(A1)
[2 marks]
(f) (ii) Show \( \frac{a}{b} = \tan \theta \):
Either use a right triangle, leading to the required result: (M1)
Or use \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), leading to the required result: (M1)
[1 mark]
(g) Prove conjectures in part (e):
\[ a \sin x + b \cos x = \sqrt{a^2 + b^2} (\sin \theta \sin x + \cos \theta \cos x) \quad (M1) \]
\[ a \sin x + b \cos x = \sqrt{a^2 + b^2} \cos(x – \theta) \quad (M1)(A1) \]
So \( A = \sqrt{a^2 + b^2}, B = 1, D = 0 \quad (A1) \)
And \( C = -\theta \quad (M1) \)
So \( C = -\arctan \frac{a}{b} \quad (A1) \)
[6 marks]