IB Mathematics AHL 5.15 Indefinite integrals AA HL Paper 3- Exam Style Questions
This question asks you to investigate the family of functions of the form \( f(x) = x^ne^{-x} \).
Consider the family of functions \( f_n(x) = x^ne^{-x} \), where \( x \geq 0 \) and \( n \in \mathbb{Z}^+ \).
When \( n = 1 \), the function \( f_1(x) = xe^{-x} \) where \( x \geq 0 \).
(a) Sketch the graph of \( y = f_1(x) \), stating the coordinates of the local maximum point.
(b) Show that the area of the region bounded by the graph \( y = f_1(x) \), the x-axis and the line \( x = b \), where \( b > 0 \), is given by \( \frac{e^b – b – 1}{e^b} \).
You may assume that the total area, \( A_n \), of the region between the graph \( y = f_n(x) \) and the x-axis can be written as \( A_n = \int_0^\infty f_n(x) dx \) and is given by \( \lim_{b \to \infty} \int_0^b f_n(x) dx \).
(c) (i) Use l’Hôpital’s rule to find \( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \).
(ii) Hence write down the value of \( A_1 \).
You are given that \( A_2 = 2 \) and \( A_3 = 6 \).
(d) Use your graphic display calculator to determine:
(i) \( A_4 \)
(ii) \( A_5 \)
(e) Suggest an expression for \( A_n \) in terms of \( n \), where \( n \in \mathbb{Z}^+ \).
(f) Use mathematical induction to prove your conjecture from part (e). You may assume that \( \lim_{x \to \infty} x^me^{-x} = 0 \) for any \( m \).
▶️ Answer/Explanation
(a) Graph Sketch and Maximum Point [3 marks]
• Find derivative: \( f_1′(x) = e^{-x} – xe^{-x} = (1-x)e^{-x} \)
• Set \( f_1′(x) = 0 \Rightarrow x = 1 \)
• Maximum at \( (1, e^{-1}) \approx (1, 0.368) \)
• Graph passes through \( (0,0) \) and approaches \( 0 \) as \( x \to \infty \)
(b) Area Calculation [3 marks]
\( \int_0^b xe^{-x}dx = \left[-xe^{-x}\right]_0^b + \int_0^b e^{-x}dx \)
\( = -be^{-b} + \left[-e^{-x}\right]_0^b \)
\( = -be^{-b} + (-e^{-b} + 1) \)
\( = 1 – e^{-b} – be^{-b} \)
\( = \frac{e^b – 1 – b}{e^b} \)
(c)(i) Limit Evaluation [3 marks]
\( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \)
Apply l’Hôpital’s rule (\( \frac{\infty}{\infty} \) form):
\( = \lim_{b \to \infty} \frac{e^b – 1}{e^b} \)
Apply again:
\( = \lim_{b \to \infty} \frac{e^b}{e^b} = 1 \)
(c)(ii) Total Area \( A_1 \) [1 mark]
\( A_1 = \lim_{b \to \infty} \) of part (b) result \( = 1 \)
(d) Numerical Approximations
(i) \( A_4 \) [2 marks]
Using GDC: \( \int_0^\infty x^4e^{-x}dx \approx 24 \)
(ii) \( A_5 \) [2 marks]
Using GDC: \( \int_0^\infty x^5e^{-x}dx \approx 120 \)
(e) General Expression [2 marks]
Observing pattern:
\( A_1 = 1 = 1! \), \( A_2 = 2 = 2! \), \( A_3 = 6 = 3! \), \( A_4 = 24 = 4! \), \( A_5 = 120 = 5! \)
Conjecture: \( A_n = n! \)
(f) Induction Proof [6 marks]
Base Case (\( n=1 \)): Verified \( A_1 = 1! \)
Inductive Step:
Assume \( A_k = k! \) holds
For \( A_{k+1} = \int x^{k+1}e^{-x}dx \):
\( = \left[-x^{k+1}e^{-x}\right]_0^\infty + (k+1)\int x^ke^{-x}dx \)
\( = 0 + (k+1)A_k \)
\( = (k+1)k! = (k+1)! \)
Thus true for \( n=k+1 \) when true for \( n=k \)