Home / Indefinite integrals AA HL Paper 3

IB Mathematics AHL 5.15 Indefinite integrals AA HL Paper 3 | Exam Style Questions

IB Mathematics AHL 5.15 Indefinite integrals AA HL Paper 3- Exam Style Questions

Question

This question asks you to investigate the family of functions of the form \( f(x) = x^ne^{-x} \).

Consider the family of functions \( f_n(x) = x^ne^{-x} \), where \( x \geq 0 \) and \( n \in \mathbb{Z}^+ \).

When \( n = 1 \), the function \( f_1(x) = xe^{-x} \) where \( x \geq 0 \).

(a) Sketch the graph of \( y = f_1(x) \), stating the coordinates of the local maximum point.

(b) Show that the area of the region bounded by the graph \( y = f_1(x) \), the x-axis and the line \( x = b \), where \( b > 0 \), is given by \( \frac{e^b – b – 1}{e^b} \).

You may assume that the total area, \( A_n \), of the region between the graph \( y = f_n(x) \) and the x-axis can be written as \( A_n = \int_0^\infty f_n(x) dx \) and is given by \( \lim_{b \to \infty} \int_0^b f_n(x) dx \).

(c) (i) Use l’Hôpital’s rule to find \( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \).

(ii) Hence write down the value of \( A_1 \).

You are given that \( A_2 = 2 \) and \( A_3 = 6 \).

(d) Use your graphic display calculator to determine:

(i) \( A_4 \)

(ii) \( A_5 \)

(e) Suggest an expression for \( A_n \) in terms of \( n \), where \( n \in \mathbb{Z}^+ \).

(f) Use mathematical induction to prove your conjecture from part (e). You may assume that \( \lim_{x \to \infty} x^me^{-x} = 0 \) for any \( m \).

▶️ Answer/Explanation
Detailed Solutions

(a) Graph Sketch and Maximum Point [3 marks]

• Find derivative: \( f_1′(x) = e^{-x} – xe^{-x} = (1-x)e^{-x} \)

• Set \( f_1′(x) = 0 \Rightarrow x = 1 \)

• Maximum at \( (1, e^{-1}) \approx (1, 0.368) \)

• Graph passes through \( (0,0) \) and approaches \( 0 \) as \( x \to \infty \)

(b) Area Calculation [3 marks]

\( \int_0^b xe^{-x}dx = \left[-xe^{-x}\right]_0^b + \int_0^b e^{-x}dx \)

\( = -be^{-b} + \left[-e^{-x}\right]_0^b \)

\( = -be^{-b} + (-e^{-b} + 1) \)

\( = 1 – e^{-b} – be^{-b} \)

\( = \frac{e^b – 1 – b}{e^b} \)

(c)(i) Limit Evaluation [3 marks]

\( \lim_{b \to \infty} \frac{e^b – b – 1}{e^b} \)

Apply l’Hôpital’s rule (\( \frac{\infty}{\infty} \) form):

\( = \lim_{b \to \infty} \frac{e^b – 1}{e^b} \)

Apply again:

\( = \lim_{b \to \infty} \frac{e^b}{e^b} = 1 \)

(c)(ii) Total Area \( A_1 \) [1 mark]

\( A_1 = \lim_{b \to \infty} \) of part (b) result \( = 1 \)

(d) Numerical Approximations

(i) \( A_4 \) [2 marks]

Using GDC: \( \int_0^\infty x^4e^{-x}dx \approx 24 \)

(ii) \( A_5 \) [2 marks]

Using GDC: \( \int_0^\infty x^5e^{-x}dx \approx 120 \)

(e) General Expression [2 marks]

Observing pattern:

\( A_1 = 1 = 1! \), \( A_2 = 2 = 2! \), \( A_3 = 6 = 3! \), \( A_4 = 24 = 4! \), \( A_5 = 120 = 5! \)

Conjecture: \( A_n = n! \)

(f) Induction Proof [6 marks]

Base Case (\( n=1 \)): Verified \( A_1 = 1! \)

Inductive Step:

Assume \( A_k = k! \) holds

For \( A_{k+1} = \int x^{k+1}e^{-x}dx \):

\( = \left[-x^{k+1}e^{-x}\right]_0^\infty + (k+1)\int x^ke^{-x}dx \)

\( = 0 + (k+1)A_k \)

\( = (k+1)k! = (k+1)! \)

Thus true for \( n=k+1 \) when true for \( n=k \)

Scroll to Top