IB Mathematics AHL 5.16 Integration by substitution and parts AA HL Paper 3
If two functions \( f(x) \) and \( g(x) \) are differentiable, then their product is differentiable and the two functions satisfy the product rule: \( (f(x)g(x))’ = f'(x)g(x) + g'(x)f(x) \).
In this question, you will meet examples of pairs of differentiable functions, \( f(x) \) and \( g(x) \), that also satisfy \( (f(x)g(x))’ = f'(x)g'(x) \).
Part (a): Consider
\( f(x) = \frac{1}{(2-x)^2} \) where \( x \in \mathbb{R} \), \( x \neq 2 \), and \( g(x) = x^2 \) where \( x \in \mathbb{R} \).
(i) Find an expression for \( f'(x) \). [3]
(ii) Show that
\( f'(x)g'(x) = \frac{4x}{(2-x)^3} \) [3]
(iii) Show that
\( f(x)g'(x) + g(x)f'(x) = \frac{4x}{(2-x)^3} \) [4]
Parts (b) and (c): Consider two non-constant functions, \( f(x) \) and \( g(x) \), where \( f(x) > 0 \) and \( g(x) \neq g'(x) \).
(b) By rearranging the equation \( f(x)g'(x) + g(x)f'(x) = f'(x)g'(x) \), show that
\( \frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x)-g(x)} \) [5]
(c) Hence, by integrating both sides of \( \frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x)-g(x)} \), show that
\( f(x) = Ae^{\int \frac{g'(x)}{g'(x)-g(x)}dx} \)
where \( A \) is an arbitrary positive constant. [6]
The result from part (c) can be used to find pairs of functions, \( f(x) \) and \( g(x) \), which satisfy both of the following:
\( (f(x)g(x))’ = f(x)g'(x) + g(x)f'(x) \) and \( (f(x)g(x))’ = f'(x)g'(x) \).
Parts (d) and (e): Use the result in part (c) with \( A = 1 \).
(d) Consider \( g(x) = xe^x \).
Find \( f(x) \) such that \( f(x) \) and \( g(x) \) satisfy the above two equations. [5]
(e) Consider \( g(x) = \sin x + \cos x \).
Find \( f(x) \) such that \( f(x) \) and \( g(x) \) satisfy the above two equations over the domain \( 0 < x < \pi \).
Give your answer in the form \( f(x) = \sqrt{e^{h(x)}} \), where \( h(x) \) is a function to be determined. [7]
▶️ Answer/Explanation
Part (a)(i) [3 marks]
Given \( f(x) = (2 – x)^{-2} \):
Using the chain rule, let \( u = 2 – x \), so \( f(x) = u^{-2} \), and \( \frac{du}{dx} = -1 \).
Then, \( \frac{df}{du} = -2 u^{-3} \), so:
\[ f'(x) = \frac{df}{du} \cdot \frac{du}{dx} = (-2 (2 – x)^{-3}) \cdot (-1) = \frac{2}{(2 – x)^3} \]
Part (a)(ii) [3 marks]
Given \( g(x) = x^2 \), so \( g'(x) = 2x \):
Using \( f'(x) = \frac{2}{(2 – x)^3} \):
\[ f'(x)g'(x) = \frac{2}{(2 – x)^3} \cdot 2x = \frac{4x}{(2 – x)^3} \]
Part (a)(iii) [4 marks]
Using the product rule: \( (f(x)g(x))’ = f(x)g'(x) + g(x)f'(x) \).
Compute each term:
\[ f(x)g'(x) = \frac{1}{(2 – x)^2} \cdot 2x = \frac{2x}{(2 – x)^2} \]
\[ g(x)f'(x) = x^2 \cdot \frac{2}{(2 – x)^3} = \frac{2x^2}{(2 – x)^3} \]
Combine with common denominator \( (2 – x)^3 \):
\[ f(x)g'(x) + g(x)f'(x) = \frac{2x}{(2 – x)^2} \cdot \frac{2 – x}{2 – x} + \frac{2x^2}{(2 – x)^3} = \frac{2x(2 – x) + 2x^2}{(2 – x)^3} \]
Simplify the numerator:
\[ 2x(2 – x) + 2x^2 = 4x – 2x^2 + 2x^2 = 4x \]
Thus:
\[ \frac{4x}{(2 – x)^3} \]
Part (b) [5 marks]
Rearrange the given equation: \( f(x)g'(x) + g(x)f'(x) = f'(x)g'(x) \).
Move all terms to one side:
\[ f(x)g'(x) + g(x)f'(x) – f'(x)g'(x) = 0 \]
Factorize:
\[ f'(x)(g(x) – g'(x)) + f(x)g'(x) = 0 \]
Rearrange:
\[ f'(x)(g'(x) – g(x)) = f(x)g'(x) \]
Divide by \( f(x)(g'(x) – g(x)) \), since \( f(x) > 0 \) and \( g'(x) \neq g(x) \):
\[ \frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x) – g(x)} \]
Part (c) [6 marks]
Integrate both sides of: \( \frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x) – g(x)} \).
Left side:
\[ \int \frac{f'(x)}{f(x)} \, dx = \ln f(x) + C_1 \]
Right side:
\[ \ln f(x) + C_1 = \int \frac{g'(x)}{g'(x) – g(x)} \, dx + C_2 \]
Combine constants: \( C = C_2 – C_1 \).
Thus:
\[ \ln f(x) = \int \frac{g'(x)}{g'(x) – g(x)} \, dx + C \]
Exponentiate:
\[ f(x) = e^{\int \frac{g'(x)}{g'(x) – g(x)} \, dx + C} = e^C e^{\int \frac{g'(x)}{g'(x) – g(x)} \, dx} \]
Let \( A = e^C \), where \( A > 0 \):
\[ f(x) = A e^{\int \frac{g'(x)}{g'(x) – g(x)} \, dx} \]
Part (d) [5 marks]
Given \( g(x) = x e^x \), with \( A = 1 \):
Compute \( g'(x) \):
\[ g'(x) = e^x + x e^x = e^x (1 + x) \]
Compute the integrand:
\[ g'(x) – g(x) = e^x (1 + x) – x e^x = e^x \]
\[ \frac{g'(x)}{g'(x) – g(x)} = \frac{e^x (1 + x)}{e^x} = 1 + x \]
Integrate:
\[ \int (1 + x) \, dx = x + \frac{x^2}{2} + C \]
Thus:
\[ f(x) = e^{x + \frac{x^2}{2} + C} = e^C e^{\frac{x^2}{2} + x} \]
Since \( A = 1 \), let \( e^C = 1 \), so:
\[ f(x) = e^{\frac{x^2}{2} + x} \]
Part (e) [7 marks]
Given \( g(x) = \sin x + \cos x \), over \( 0 < x < \pi \), with \( A = 1 \):
Compute \( g'(x) \):
\[ g'(x) = \cos x – \sin x \]
Compute the integrand:
\[ g'(x) – g(x) = (\cos x – \sin x) – (\sin x + \cos x) = -2 \sin x \]
\[ \frac{g'(x)}{g'(x) – g(x)} = \frac{\cos x – \sin x}{-2 \sin x} = \frac{\sin x – \cos x}{2 \sin x} = \frac{1}{2} \left( \frac{\sin x}{\sin x} – \frac{\cos x}{\sin x} \right) = \frac{1}{2} – \frac{1}{2} \cot x \]
Integrate:
\[ \int \left( \frac{1}{2} – \frac{1}{2} \cot x \right) \, dx = \frac{1}{2} x – \frac{1}{2} \int \cot x \, dx \]
Since \( \int \cot x \, dx = \ln |\sin x| + C_1 \), and \( \sin x > 0 \) for \( 0 < x < \pi \):
\[ \int \left( \frac{1}{2} – \frac{1}{2} \cot x \right) \, dx = \frac{1}{2} x – \frac{1}{2} \ln \sin x + C \]
Thus:
\[ f(x) = e^{\frac{1}{2} x – \frac{1}{2} \ln \sin x + C} = e^C e^{\frac{x – \ln \sin x}{2}} = e^C \sqrt{\frac{e^x}{\sin x}} \]
Since \( A = 1 \), let \( e^C = 1 \), so:
\[ f(x) = \sqrt{\frac{e^x}{\sin x}} \]
Express in the form \( f(x) = \sqrt{e^{h(x)}} \):
\[ \sqrt{\frac{e^x}{\sin x}} = \sqrt{e^x \cdot e^{-\ln \sin x}} = \sqrt{e^{x – \ln \sin x}} \]
Thus, \( h(x) = x – \ln \sin x \).
(a)(i)
Attempts chain rule differentiation to find \( f'(x) \) [1]
Correctly differentiates: \( f'(x) = -2(2-x)^{-3} \cdot (-1) \) [1]
Simplifies to \( \frac{2}{(2-x)^3} \) [1]
(a)(ii)
Finds \( g'(x) = 2x \) [1]
Multiplies \( f'(x)g'(x) = \left( \frac{2}{(2-x)^3} \right) (2x) \) [1]
Obtains \( \frac{4x}{(2-x)^3} \) [1]
(a)(iii)
EITHER
Computes \( f(x)g'(x) = \frac{2x}{(2-x)^2} \) and \( g(x)f'(x) = \frac{2x^2}{(2-x)^3} \) [2]
Combines: \( \frac{2x(2-x) + 2x^2}{(2-x)^3} \) [1]
Simplifies to \( \frac{4x}{(2-x)^3} \) [1]
OR
Uses product rule on \( f(x)g(x) \) directly [2]
Forms common denominator \( (2-x)^3 \) [1]
Obtains \( \frac{4x}{(2-x)^3} \) [1]
(b)
Rearranges \( f(x)g'(x) + g(x)f'(x) = f'(x)g'(x) \) [1]
Obtains \( f'(x)(g'(x) – g(x)) = f(x)g'(x) \) [2]
Divides to get \( \frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x) – g(x)} \) [2]
(c)
Integrates left side: \( \int \frac{f'(x)}{f(x)} \, dx = \ln f(x) + C_1 \) [2]
Integrates right side: \( \int \frac{g'(x)}{g'(x) – g(x)} \, dx + C_2 \) [1]
Equates and combines constants [1]
Exponentiates to \( f(x) = e^C e^{\int \frac{g'(x)}{g'(x) – g(x)} \, dx} \) [1]
States \( f(x) = A e^{\int \frac{g'(x)}{g'(x) – g(x)} \, dx} \) [1]
(d)
Computes \( g'(x) = e^x (1 + x) \) [1]
Finds \( g'(x) – g(x) = e^x \) [1]
Obtains \( \frac{g'(x)}{g'(x) – g(x)} = 1 + x \) [1]
Integrates: \( x + \frac{x^2}{2} + C \) [1]
Applies \( A = 1 \): \( f(x) = e^{\frac{x^2}{2} + x} \) [1]
(e)
Computes \( g'(x) = \cos x – \sin x \) [1]
Finds \( g'(x) – g(x) = -2 \sin x \) [1]
Obtains \( \frac{\cos x – \sin x}{-2 \sin x} = \frac{1}{2} – \frac{1}{2} \cot x \) [2]
Integrates: \( \frac{1}{2} x – \frac{1}{2} \ln \sin x + C \) [2]
Applies \( A = 1 \): \( f(x) = \sqrt{\frac{e^x}{\sin x}} \), \( h(x) = x – \ln \sin x \) [1]