Home / IBDP Maths AA: Topic : SL 1.3: Geometric sequences and series: IB style Questions SL Paper 2

IBDP Maths AA: Topic : SL 1.3: Geometric sequences and series: IB style Questions SL Paper 2

Question

An infinite geometric series has first term u1 = a and second term u2 = \(\frac{1}{4}\)a2– 3a , where a > 0 .

  1. Find the common ratio in terms of a . [2]

  2. Find the values of a for which the sum to infinity of the series exists. [3]

  3. Find the value of a when S = 76. [3]

Answer/Explanation

Ans

Question

The first three terms of a geometric sequence are \(\ln {x^{16}}\), \(\ln {x^8}\), \(\ln {x^4}\), for \(x > 0\).

Find the common ratio.

[3]
a.

Solve \(\sum\limits_{k = 1}^\infty  {{2^{5 – k}}\ln x = 64} \).

[5]
b.
Answer/Explanation

Markscheme

correct use \(\log {x^n} = n\log x\)     A1

eg\(\,\,\,\,\,\)\(16\ln x\)

valid approach to find \(r\)     (M1)

eg\(\,\,\,\,\,\)\(\frac{{{u_{n + 1}}}}{{{u_n}}},{\text{ }}\frac{{\ln {x^8}}}{{\ln {x^{16}}}},{\text{ }}\frac{{4\ln x}}{{8\ln x}},{\text{ }}\ln {x^4} = \ln {x^{16}} \times {r^2}\)

\(r = \frac{1}{2}\)     A1     N2

[3 marks]

a.

recognizing a sum (finite or infinite)     (M1)

eg\(\,\,\,\,\,\)\({2^4}\ln x + {2^3}\ln x,{\text{ }}\frac{a}{{1 – r}},{\text{ }}{S_\infty },{\text{ }}16\ln x +  \ldots \)

valid approach (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)recognizing GP is the same as part (a), using their \(r\) value from part (a), \(r = \frac{1}{2}\)

correct substitution into infinite sum (only if \(\left| r \right|\) is a constant and less than 1)     A1

eg\(\,\,\,\,\,\)\(\frac{{{2^4}\ln x}}{{1 – \frac{1}{2}}},{\text{ }}\frac{{\ln {x^{16}}}}{{\frac{1}{2}}},{\text{ }}32\ln x\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(\ln x = 2\)

\(x = {{\text{e}}^2}\)     A1     N3

[5 marks]

b.

Question

The first three terms of a infinite geometric sequence are \(m – 1,{\text{ 6, }}m + 4\), where \(m \in \mathbb{Z}\).

Write down an expression for the common ratio, \(r\).

[2]
a(i).

Hence, show that \(m\) satisfies the equation \({m^2} + 3m – 40 = 0\).

[2]
a(ii).

Find the two possible values of \(m\).

[3]
b(i).

Find the possible values of \(r\).

[3]
b(ii).

The sequence has a finite sum.

State which value of \(r\) leads to this sum and justify your answer.

[3]
c(i).

The sequence has a finite sum.

Calculate the sum of the sequence.

[3]
c(ii).
Answer/Explanation

Markscheme

correct expression for \(r\)     A1     N1

eg   \(r = \frac{6}{{m – 1}},{\text{ }}\frac{{m + 4}}{6}\)

[2 marks]

a(i).

correct equation     A1

eg     \(\frac{6}{{m – 1}} = \frac{{m + 4}}{6},{\text{ }}\frac{6}{{m + 4}} = \frac{{m – 1}}{6}\)

correct working     (A1)

eg     \((m + 4)(m – 1) = 36\)

correct working     A1

eg     \({m^2} – m + 4m – 4 = 36,{\text{ }}{m^2} + 3m – 4 = 36\)

\({m^2} + 3m – 40 = 0\)     AG     N0

[2 marks] 

a(ii).

valid attempt to solve     (M1)

eg     \((m + 8)(m – 5) = 0,{\text{ }}m = \frac{{ – 3 \pm \sqrt {9 + 4 \times 40} }}{2}\)

\(m =  – 8,{\text{ }}m = 5\)     A1A1     N3

[3 marks]

b(i).

attempt to substitute any value of \(m\) to find \(r\)     (M1)

eg     \(\frac{6}{{ – 8 – 1}},{\text{ }}\frac{{5 + 4}}{6}\)

\(r = \frac{3}{2},{\text{ }}r =  – \frac{2}{3}\)     A1A1     N3

[3 marks]

b(ii).

\(r =  – \frac{2}{3}\)   (may be seen in justification)     A1

valid reason     R1     N0

eg     \(\left| r \right| < 1,{\text{ }} – 1 < \frac{{ – 2}}{3} < 1\)

 

Notes: Award R1 for \(\left| r \right| < 1\) only if A1 awarded.

 

[2 marks]

c(i).

finding the first term of the sequence which has \(\left| r \right| < 1\)     (A1)

eg     \( – 8 – 1,{\text{ }}6 \div \frac{{ – 2}}{3}\)

\({u_1} =  – 9\)   (may be seen in formula)     (A1)

correct substitution of \({u_1}\) and their \(r\) into \(\frac{{{u_1}}}{{1 – r}}\), as long as \(\left| r \right| < 1\)     A1

eg     \({S_\infty } = \frac{{ – 9}}{{1 – \left( { – \frac{2}{3}} \right)}},{\text{ }}\frac{{ – 9}}{{\frac{5}{3}}}\)

\({S_\infty } =  – \frac{{27}}{5}{\text{ }}( =  – 5.4)\)     A1     N3

[4 marks] 

c(ii).

Examiners report

[N/A]

a(i).

[N/A]

a(ii).

[N/A]

b(i).

[N/A]

b(ii).

[N/A]

c(i).

[N/A]

c(ii).

Question

The following diagram shows [AB], with length 2 cm. The line is divided into an infinite number of line segments. The diagram shows the first three segments.

N17/5/MATME/SP1/ENG/TZ0/10.a

The length of the line segments are \(p{\text{ cm}},{\text{ }}{p^2}{\text{ cm}},{\text{ }}{p^3}{\text{ cm}},{\text{ }} \ldots \), where \(0 < p < 1\).

Show that \(p = \frac{2}{3}\).

[5]
a.

The following diagram shows [CD], with length \(b{\text{ cm}}\), where \(b > 1\). Squares with side lengths \(k{\text{ cm}},{\text{ }}{k^2}{\text{ cm}},{\text{ }}{k^3}{\text{ cm}},{\text{ }} \ldots \), where \(0 < k < 1\), are drawn along [CD]. This process is carried on indefinitely. The diagram shows the first three squares.

N17/5/MATME/SP1/ENG/TZ0/10.b

The total sum of the areas of all the squares is \(\frac{9}{{16}}\). Find the value of \(b\).

[9]
b.
Answer/Explanation

Markscheme

infinite sum of segments is 2 (seen anywhere)     (A1)

eg\(\,\,\,\,\,\)\(p + {p^2} + {p^3} +  \ldots  = 2,{\text{ }}\frac{{{u_1}}}{{1 – r}} = 2\)

recognizing GP     (M1)

eg\(\,\,\,\,\,\)ratio is \(p,{\text{ }}\frac{{{u_1}}}{{1 – r}},{\text{ }}{u_n} = {u_1} \times {r^{n – 1}},{\text{ }}\frac{{{u_1}({r^n} – 1)}}{{r – 1}}\)

correct substitution into \({S_\infty }\) formula (may be seen in equation)     A1

eg\(\,\,\,\,\,\)\(\frac{p}{{1 – p}}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\(\frac{p}{{1 – p}} = 2,{\text{ }}p = 2 – 2p\)

correct working leading to answer     A1

eg\(\,\,\,\,\,\)\(3p = 2,{\text{ }}2 – 3p = 0\)

\(p = \frac{2}{3}{\text{ (cm)}}\)     AG     N0

[5 marks]

a.

recognizing infinite geometric series with squares     (M1)

eg\(\,\,\,\,\,\)\({k^2} + {k^4} + {k^6} +  \ldots ,{\text{ }}\frac{{{k^2}}}{{1 – {k^2}}}\)

correct substitution into \({S_\infty } = \frac{9}{{16}}\) (must substitute into formula)     (A2)

eg\(\,\,\,\,\,\)\(\frac{{{k^2}}}{{1 – {k^2}}} = \frac{9}{{16}}\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(16{k^2} = 9 – 9{k^2},{\text{ }}25{k^2} = 9,{\text{ }}{k^2} = \frac{9}{{25}}\)

\(k = \frac{3}{5}\) (seen anywhere)     A1

valid approach with segments and CD (may be seen earlier)     (M1)

eg\(\,\,\,\,\,\)\(r = k,{\text{ }}{S_\infty } = b\)

correct expression for \(b\) in terms of \(k\) (may be seen earlier)     (A1)

eg\(\,\,\,\,\,\)\(b = \frac{k}{{1 – k}},{\text{ }}b = \sum\limits_{n = 1}^\infty  {{k^n},{\text{ }}b = k + {k^2} + {k^3} +  \ldots } \)

substituting their value of \(k\) into their formula for \(b\)     (M1)

eg\(\,\,\,\,\,\)\(\frac{{\frac{3}{5}}}{{1 – \frac{3}{5}}},{\text{ }}\frac{{\left( {\frac{3}{5}} \right)}}{{\left( {\frac{2}{5}} \right)}}\)

\(b = \frac{3}{2}\)     A1     N3

[9 marks]

b.
Scroll to Top