Home / IBDP Maths AA: Topic : SL 1.9: The binomial theorem: IB style Questions SL Paper 2

IBDP Maths AA: Topic : SL 1.9: The binomial theorem: IB style Questions SL Paper 2

Question

The expansion of \((x + h)^8\) , where h > 0, can be written as \(x^8+ax^7 + bx^6 + cx^5 + dx^4 + … + h^8\), where a, c, b, c, d, … \(\epsilon \mathbb{R}\)

(a) Find an expression, in terms of h, for
(i) a;
(ii) b;
(iii) d .

(b) Given that a, b, and d are the first three terms of a geometric sequence, find the value of h.

▶️Answer/Explanation

Answer:

(a) attempt to use the binomial expansion of \((x+h)^8\)

(i) a = 8h (accept \(^8C_1\)h )
(ii) b = 28\(h^2\) (accept \(^8C_2h^2\))
(iii) d = 70\(h^4\) (accept \(^8C_4 h^4\))

(b) recognition that there is a common ratio between their terms
\(8h \times r = 28 h^2\) OR \(28h^2 \times r= 70 h^4\) OR \(8h \times r^2 = 70h^4\)
correct equation in terms of h
\(\frac{28h^2}{8h} = \frac{70h^4}{28h^2}\)(or equivalent)
h = 1.4

Question

Consider the expansion of \((3x^2- \frac{k}{x})^9\)

The coefficient of the term in x6 is 6048. Find the value of k .

Answer/Explanation

Ans

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r).

Question

Consider the expansion of \({\left( {2x + \frac{k}{x}} \right)^9}\), where k > 0 . The coefficient of the term in x3 is equal to the coefficient of the term in  x5. Find k.

Answer/Explanation

Markscheme

valid approach to find one of the required terms (must have correct substitution for parameters but accept “r” or an incorrect value for r)       (M1)

Question

Find the term \({x^3}\) in the expansion of \({\left( {\frac{2}{3}x – 3} \right)^8}\) .

Answer/Explanation

Markscheme

evidence of using binomial expansion     (M1)

e.g. selecting correct term, \({a^8}{b^0} + \left( {\begin{array}{*{20}{c}}
8\\
1
\end{array}} \right){a^7}b + \left( {\begin{array}{*{20}{c}}
8\\
2
\end{array}} \right){a^6}{b^2} + \ldots \)

evidence of calculating the factors, in any order     A1A1A1

e.g. 56 , \(\frac{{{2^2}}}{{{3^3}}}\) , \( – {3^5}\) , \(\left( {\begin{array}{*{20}{c}}
8\\
5
\end{array}} \right){\left( {\frac{2}{3}x} \right)^3}{( – 3)^5}\)

\( – 4032{x^3}\) (accept = \( – 4030{x^3}\) to 3 s.f.)     A1     N2

[5 marks]

Question

Let \(f(x) = {x^3} – 4x + 1\) .

a.Expand \({(x + h)^3}\) .[2]

b.Use the formula \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) – f(x)}}{h}\) to show that the derivative of \(f(x)\) is \(3{x^2} – 4\) .[4]

c.The tangent to the curve of f at the point \({\text{P}}(1{\text{, }} – 2)\) is parallel to the tangent at a point Q. Find the coordinates of Q.[4]

d.The graph of f is decreasing for \(p < x < q\) . Find the value of p and of q.[3]

e.Write down the range of values for the gradient of \(f\) .[2]
 
Answer/Explanation

Markscheme

attempt to expand     (M1)

\({(x + h)^3} = {x^3} + 3{x^2}h + 3x{h^2} + {h^3}\)     A1     N2

[2 marks]

a.

evidence of substituting \(x + h\)     (M1)

correct substitution     A1

e.g. \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{{{(x + h)}^3} – 4(x + h) + 1 – ({x^3} – 4x + 1)}}{h}\)

simplifying     A1

e.g. \(\frac{{({x^3} + 3{x^2}h + 3x{h^2} + {h^3} – 4x – 4h + 1 – {x^3} + 4x – 1)}}{h}\)

factoring out h     A1

e.g. \(\frac{{h(3{x^2} + 3xh + {h^2} – 4)}}{h}\)

\(f'(x) = 3{x^2} – 4\)     AG     N0

[4 marks]

b.

\(f'(1) = – 1\)    (A1)

setting up an appropriate equation     M1

e.g. \(3{x^2} – 4 = – 1\)

at Q, \(x = – 1,y = 4\) (Q is \(( – 1{\text{, }}4)\))    A1    A1

[4 marks]

c.

recognizing that f is decreasing when \(f'(x) < 0\)     R1

correct values for p and q (but do not accept \(p = 1.15{\text{, }}q = – 1.15\) )     A1A1     N1N1

e.g. \(p = – 1.15{\text{, }}q = 1.15\) ; \( \pm \frac{2}{{\sqrt 3 }}\) ; an interval such as \( – 1.15 \le x \le 1.15\)

[3 marks]

d.

\(f'(x) \ge – 4\) , \(y \ge – 4\) , \(\left[ { – 4,\infty } \right[\)     A2     N2

[2 marks]

e.
Scroll to Top