IB Mathematics SL 2.1 equation of a straight line AA SL Paper 1- Exam Style Questions- New Syllabus
Quadrilateral OABC is symmetrical about [OB].
A has coordinates \( (6, 0) \) and C has coordinates \( (3, 3\sqrt{3}) \).
Part (a):
(i) Write down the coordinates of the midpoint of [AC].
(ii) Hence or otherwise, find the equation of the line passing through the points O and B.
Part (b):
Given that [OA] is perpendicular to [AB], find the area of the quadrilateral OABC.
▶️ Answer/Explanation
Part (a)
(i) Midpoint of [AC] with \( A(6, 0) \), \( C(3, 3\sqrt{3}) \):
\[ M = \left( \frac{6 + 3}{2}, \frac{0 + 3\sqrt{3}}{2} \right) = \left( \frac{9}{2}, \frac{3\sqrt{3}}{2} \right) = \left( 4.5, \frac{3\sqrt{3}}{2} \right) \]
Answer: \( \left( 4.5, \frac{3\sqrt{3}}{2} \right) \)
(ii) Since OABC is symmetrical about [OB], \( M \) lies on [OB]. Line [OB] passes through \( O(0, 0) \) and \( M \left( 4.5, \frac{3\sqrt{3}}{2} \right) \).
Slope of [OB]:
\[ m = \frac{\frac{3\sqrt{3}}{2} – 0}{4.5 – 0} = \frac{\frac{3\sqrt{3}}{2}}{4.5} = \frac{3\sqrt{3}}{2} \cdot \frac{1}{4.5} = \frac{3\sqrt{3}}{9} = \frac{\sqrt{3}}{3} \]
Equation through origin: \( y = \frac{\sqrt{3}}{3}x \).
Answer: \( y = \frac{\sqrt{3}}{3}x \)
Part (b)
Since [OA] \(\perp\) [AB], find coordinates of \( B \). Let \( B(x_B, y_B) \) lie on \( y = \frac{\sqrt{3}}{3}x \), so \( y_B = \frac{\sqrt{3}}{3}x_B \).
Slope of [OA] (from \( O(0, 0) \) to \( A(6, 0) \)): \( m_{OA} = \frac{0 – 0}{6 – 0} = 0 \).
Slope of [AB] (from \( A(6, 0) \) to \( B(x_B, y_B) \)): \( m_{AB} = \frac{y_B – 0}{x_B – 6} = \frac{y_B}{x_B – 6} \).
Since \( m_{OA} \cdot m_{AB} = -1 \), and \( m_{OA} = 0 \), \( m_{AB} \) is undefined (vertical line). Thus, \( x_B = 6 \).
Substitute \( x_B = 6 \) into \( y_B = \frac{\sqrt{3}}{3}x_B \):
\[ y_B = \frac{\sqrt{3}}{3} \cdot 6 = 2\sqrt{3} \]
So, \( B(6, 2\sqrt{3}) \).
Verify symmetry about [OB]: Midpoint of [AC] matches \( M \). For [BC], midpoint:
\[ M_{BC} = \left( \frac{6 + 3}{2}, \frac{2\sqrt{3} + 3\sqrt{3}}{2} \right) = \left( 4.5, \frac{5\sqrt{3}}{2} \right) \]
This does not lie on [OB], indicating a need to check coordinates or symmetry. Assume \( C’ \), the symmetric point to \( C \), exists. Since \( C(3, 3\sqrt{3}) \), find \( C’ \) such that midpoint of [CC’] is on [OB]. Let \( C'(x_C’, y_C’) \), midpoint:
\[ \left( \frac{3 + x_C’}{2}, \frac{3\sqrt{3} + y_C’}{2} \right) \]
Lies on \( y = \frac{\sqrt{3}}{3}x \):
\[ \frac{3\sqrt{3} + y_C’}{2} = \frac{\sqrt{3}}{3} \cdot \frac{3 + x_C’}{2} \]
Assume \( x_C’ = 6 \), then midpoint \( x = 4.5 \), \( y = \frac{\sqrt{3}}{3} \cdot 4.5 = \frac{3\sqrt{3}}{2} \), matches \( M \).
Area of triangle OAB: \( \text{Area} = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 6 \cdot 2\sqrt{3} = 6\sqrt{3} \).
By symmetry, area of OABC = \( 2 \cdot 6\sqrt{3} = 12\sqrt{3} \).
Answer: \( 12\sqrt{3} \)
Point P has coordinates \( (-3, 2) \), and point Q has coordinates \( (15, -8) \). Point M is the midpoint of [PQ].
Part (a):
Find the coordinates of M.
Part (b):
Line L is perpendicular to [PQ] and passes through M. Find the gradient of L.
Part (c):
Hence, write down the equation of L.
▶️ Answer/Explanation
Part (a)
Midpoint M of [PQ] with \( P(-3, 2) \), \( Q(15, -8) \):
\[ M = \left( \frac{-3 + 15}{2}, \frac{2 + (-8)}{2} \right) = \left( \frac{12}{2}, \frac{-6}{2} \right) = (6, -3) \]
Answer: \( (6, -3) \)
Part (b)
Gradient of [PQ]:
\[ m_{PQ} = \frac{-8 – 2}{15 – (-3)} = \frac{-10}{18} = -\frac{5}{9} \]
Gradient of L, perpendicular to [PQ]:
\[ m_L = -\frac{1}{m_{PQ}} = -\frac{1}{-\frac{5}{9}} = \frac{9}{5} \]
Answer: \( \frac{9}{5} \)
Part (c)
Line L passes through \( M(6, -3) \) with gradient \( \frac{9}{5} \). Using point-slope form:
\[ y – (-3) = \frac{9}{5} (x – 6) \]
\[ y + 3 = \frac{9}{5} (x – 6) \]
Alternatively, slope-intercept form:
\[ y = \frac{9}{5} x – \frac{54}{5} – 3 = \frac{9}{5} x – \frac{54}{5} – \frac{15}{5} = \frac{9}{5} x – \frac{69}{5} \]
Answer: \( y + 3 = \frac{9}{5} (x – 6) \) or \( y = \frac{9}{5} x – \frac{69}{5} \)