Home / IBDP Maths AA: Topic SL 3.3: Applications of right and non-right angled trigonometry, including Pythagoras’s theorem: IB style Questions HL Paper 1

IBDP Maths AA: Topic SL 3.3: Applications of right and non-right angled trigonometry, including Pythagoras’s theorem: IB style Questions HL Paper 1

Question

Quadrilateral OABC is shown on the following set of axes. 

$OABC\text{ is symmetrical about }[OB].$

$A\text{ has coordinates }(6,0)\text{ and }C\text{ has coordinates }(3,3\sqrt{3}).$

$(a)\quad(i)\text{ Write down the coordinates of the midpoint of }[AC].$

$\quad\quad(ii)\text{ Hence or otherwise, find the equation of the line passing through the points }O\text{ and }B.$

$(b)\text{ Given that }[OA]\text{ is perpendicular to }[AB],\text{ find the area of the quadrilateral }OABC.$

▶️Answer/Explanation

Solution:-

(b) substituting $x=6$ into their equation

so at B $y=2\sqrt{3}$

area of triangle $OAB=\frac{1}{2}\times6\times2\sqrt{3}=6\sqrt{3}$

area of quadrilateral $OABC=12\sqrt{3}$

Solution 

(a) (i)The mid point of AC given 

 $A\text{ has coordinates }(6,0)\text{ and }C\text{ has coordinates }(3,3\sqrt{3})$, let the mid point be M

Therefore, the mid point M is $\frac{6+3}{2}, \frac{0+3\sqrt{3}}{2}$

                          Coordinates of M = $\frac{9}{2}, \frac{3\sqrt{3}}{2}$

(ii) Point M lies on OB, the slope of line OB can be found by Coordinates of point O(0,0) and coordinates of M = $\frac{9}{2}, \frac{3\sqrt{3}}{2}$

Slope $ tan\theta = m = \frac{\frac{3\sqrt{3}}{2}-0}{\frac{9}{2}-0}$ = $\frac{1}{\sqrt{3}}$

Therefore, equation of line OB passing through origin, y=$\frac{1}{\sqrt{3}}$x

(b)  Since $OABC\text{ is symmetrical about }[OB]$

Therefore area of the quadrilateral }OABC = $(2\times area of triangle OAB)$

                                                                              = $(2\times \frac{1}{2} OA. AB)$

$\text{ Given that }[OA]\text{ is perpendicular to }[AB]$, so $ tan\theta$ = $\frac{1}{\sqrt{3}}$ = $\frac{AB}{OA}$ = $\frac{AB}{6}$

Therefore AB =\(\frac{6}{\sqrt{3}}\),Therefore area  of the quadrilateral OABC =\( 2 \times\frac{6}{\sqrt{3}}\)

area of quadrilateral OABC=\(12\sqrt{3}\)

Question

ABCD is a quadrilateral where \({\text{AB}} = 6.5,{\text{ BC}} = 9.1,{\text{ CD}} = 10.4,{\text{ DA}} = 7.8\) and \({\rm{C\hat DA}} = 90^\circ \). Find \({\rm{A\hat BC}}\), giving your answer correct to the nearest degree.

▶️Answer/Explanation

Markscheme

\({\text{A}}{{\text{C}}^2} = {7.8^2} + {10.4^2}\)    (M1)

\({\text{AC}} = 13\)    (A1)

use of cosine rule eg, \(\cos ({\rm{A\hat BC}}) = \frac{{{{6.5}^2} + {{9.1}^2} – {{13}^2}}}{{2(6.5)(9.1)}}\)     M1

\({\rm{A\hat BC}} = 111.804 \ldots ^\circ {\text{ }}( = 1.95134 \ldots )\)    (A1)

\( = 112^\circ \)    A1

[5 marks]

Examiners report

Well done by most candidates. A small number of candidates did not express the required angle correct to the nearest degree.

Scroll to Top