IBDP Maths SL 5.11 Definite integrals AA HL Paper 1- Exam Style Questions- New Syllabus
a. Find \(\int x (\ln x)^2 \, dx\). [6]
b. Hence, show that \(\int_{1}^{4} x (\ln x)^2 \, dx = 32 (\ln 2)^2 – 16 \ln 2 + \frac{15}{4}\). [3]
▶️ Answer/Explanation
Use integration by parts: Let \( u = (\ln x)^2 \), \( dv = x \, dx \). M1
Then: \( du = 2 \ln x \cdot \frac{1}{x} \, dx = \frac{2 \ln x}{x} \, dx \), \( v = \frac{x^2}{2} \). A1
Apply integration by parts: \(\int u \, dv = uv – \int v \, du\).
\(\int x (\ln x)^2 \, dx = \frac{x^2}{2} (\ln x)^2 – \int \frac{x^2}{2} \cdot \frac{2 \ln x}{x} \, dx = \frac{x^2}{2} (\ln x)^2 – \int x \ln x \, dx\). A1
For \(\int x \ln x \, dx\), use integration by parts again: Let \( u = \ln x \), \( dv = x \, dx \). M1
Then: \( du = \frac{1}{x} \, dx \), \( v = \frac{x^2}{2} \). A1
\(\int x \ln x \, dx = \frac{x^2}{2} \ln x – \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \ln x – \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln x – \frac{x^2}{4} + C_1\). A1
Substitute back: \(\int x (\ln x)^2 \, dx = \frac{x^2}{2} (\ln x)^2 – \left( \frac{x^2}{2} \ln x – \frac{x^2}{4} \right) = \frac{x^2}{2} (\ln x)^2 – \frac{x^2}{2} \ln x + \frac{x^2}{4}\).
Combine: \(\frac{x^2}{2} \left( (\ln x)^2 – \ln x + \frac{1}{2} \right) + C\). A1
[6 marks]
Evaluate \(\int_{1}^{4} x (\ln x)^2 \, dx = \left[ \frac{x^2}{2} \left( (\ln x)^2 – \ln x + \frac{1}{2} \right) \right]_{1}^{4}\). M1
Upper limit \( x = 4 \): \(\ln 4 = 2 \ln 2\), \((\ln 4)^2 = (2 \ln 2)^2 = 4 (\ln 2)^2\).
\(\frac{4^2}{2} \left( 4 (\ln 2)^2 – 2 \ln 2 + \frac{1}{2} \right) = 8 \left( 4 (\ln 2)^2 – 2 \ln 2 + \frac{1}{2} \right) = 32 (\ln 2)^2 – 16 \ln 2 + 4\). A1
Lower limit \( x = 1 \): \(\ln 1 = 0\), \(\frac{1^2}{2} \left( 0 – 0 + \frac{1}{2} \right) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\). A1
Combine: \(32 (\ln 2)^2 – 16 \ln 2 + 4 – \frac{1}{4} = 32 (\ln 2)^2 – 16 \ln 2 + \frac{16}{4} – \frac{1}{4} = 32 (\ln 2)^2 – 16 \ln 2 + \frac{15}{4}\). A1
[3 marks]
Total [9 marks]
Let \( f(x) = \sqrt{12 – 2x} \), \( x \leq a \). The following diagram shows part of the graph of \( f \).
The shaded region is enclosed by the graph of \( f \), the \( x \)-axis, and the \( y \)-axis.
The graph of \( f \) intersects the \( x \)-axis at the point \( (a, 0) \).
a. Find the value of \( a \). [2]
b. Find the volume of the solid formed when the shaded region is revolved \( 360^\circ \) about the \( x \)-axis. [5]
▶️ Answer/Explanation
Recognize that the graph intersects the \( x \)-axis when \( f(x) = 0 \). M1
\( \sqrt{12 – 2x} = 0 \)
\( 12 – 2x = 0 \)
\( 2x = 12 \)
\( a = 6 \). A1
[2 marks]
Volume of the solid formed by revolving the region about the \( x \)-axis is given by \( \pi \int_0^6 [f(x)]^2 \, dx \). M1
\( f(x) = \sqrt{12 – 2x} \), so \( [f(x)]^2 = 12 – 2x \).
\( \text{Volume} = \pi \int_0^6 (12 – 2x) \, dx \). M1
Integrate: \( \int (12 – 2x) \, dx = 12x – x^2 + C \). A1
Evaluate: \( \left[ 12x – x^2 \right]_0^6 = (12 \cdot 6 – 6^2) – (12 \cdot 0 – 0^2) = 72 – 36 = 36 \). A1
\( \text{Volume} = \pi \cdot 36 = 36\pi \). A1
[5 marks]