Home / IBDP Maths AA: Topic SL 5.4: Tangents and normals at a given point: IB style Questions SL Paper 2

IBDP Maths AA: Topic SL 5.4: Tangents and normals at a given point: IB style Questions SL Paper 2

Question

Consider the function f defined by f (x) = 90e-0.5x for x ∈ R+ The graph of f and the line y = x intersect at point P.

    1. Find the x-coordinate of P. [2]

      The line L has a gradient of 1 and is a tangent to the graph of f at the point Q.

    2. Find the exact coordinates of Q. [4]

    3. Show that the equation of L is y = -x + 2ln45 + 2 . [2]

      The shaded region A is enclosed by the graph of f and the lines y = x and L .

    4. (i) Find the x-coordinate of the point where L intersects the line y = x .

      (ii) Hence, find the area of A . [5]

      The line L is tangent to the graphs of both f and the inverse function f 1 .

      1. Find the shaded area enclosed by the graphs of f and f 1 and the line L . [2]

Answer/Explanation

Ans:

(a)

attempt to find the point of intersection of the graph of f and the line y = x

x = 5.56619… = 5.57

(b)

\(f'(x)=-45e^{-0.5x}\)

attempt to set the gradient of equal to -1 

-45e -0.5x  = -1

Q has coordinates \((2ln45,2) \)or \((-2 ln\frac{1}{45},2)\)

(c)

attempt to substitute coordinates of Q ( in any order) into an appropriate equation

y-2= -(x-2ln45)

OR

2= – 2 ln 45 + C

equation of L is y = – x+ 2ln 45 + 2

(d)

(i) x= ln45 + 1 (=4.81)

(ii) appropriate method to find the sum of two areas using integrals of the difference of two functions

=1.51965… =1.52

(e) by symmetry 2 ×1.52

= 3.03930… = 3.04

Question

Let \(f(x) = {{\rm{e}}^x}(1 – {x^2})\) .

Part of the graph of \(y = f(x)\), for \( – 6 \le x \le 2\) , is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively.


Show that \(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\) . 

[3]
a.

Write down the equation of the horizontal asymptote.

[1]
b.

Write down the value of r and of s.

[4]
c.

Let L be the normal to the curve of f at \({\text{P}}(0{\text{, }}1)\) . Show that L has equation \(x + y = 1\) .

[4]
d.

Let R be the region enclosed by the curve \(y = f(x)\) and the line L.

(i)     Find an expression for the area of R.

(ii)    Calculate the area of R.

[5]
e(i) and (ii).
Answer/Explanation

Markscheme

evidence of using the product rule     M1

\(f'(x) = {{\rm{e}}^x}(1 – {x^2}) + {{\rm{e}}^x}( – 2x)\)     A1A1

Note: Award A1 for \({{\rm{e}}^x}(1 – {x^2})\) , A1 for \({{\rm{e}}^x}( – 2x)\) .

\(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\)     AG     N0

[3 marks]

a.

\(y = 0\)     A1     N1

[1 mark]

b.

at the local maximum or minimum point

\(f'(x) = 0\) \(({{\rm{e}}^x}(1 – 2x – {x^2}) = 0)\)     (M1)

\( \Rightarrow 1 – 2x – {x^2} = 0\)     (M1)

\(r = – 2.41\) \(s = 0.414\)     A1A1     N2N2

[4 marks]

c.

\(f'(0) = 1\)     A1

gradient of the normal \(= – 1\)     A1

evidence of substituting into an equation for a straight line     (M1)

correct substitution     A1

e.g. \(y – 1 = – 1(x – 0)\) , \(y – 1 = – x\) , \(y = – x + 1\)

\(x + y = 1\)     AG     N0

[4 marks]

d.

(i) intersection points at \(x = 0\) and \(x = 1\) (may be seen as the limits)     (A1)

approach involving subtraction and integrals     (M1)

fully correct expression     A2     N4

e.g. \(\int_0^1 {\left( {{{\rm{e}}^x}(1 – {x^2}) – (1 – x)} \right)} {\rm{d}}x\) , \(\int_0^1 {f(x){\rm{d}}x – \int_0^1 {(1 – x){\rm{d}}x} } \)

(ii) area \(R = 0.5\)     A1     N1

[5 marks]

e(i) and (ii).

Question

Let \(f(x) = {{\rm{e}}^{2x}}\cos x\) , \( – 1 \le x \le 2\) .

Show that \(f'(x) = {{\rm{e}}^{2x}}(2\cos x – \sin x)\) .

[3]
a.

Let the line L be the normal to the curve of f at \(x = 0\) .

Find the equation of L .

[5]
b.

The graph of f and the line L intersect at the point (0, 1) and at a second point P.

(i)     Find the x-coordinate of P.

(ii)    Find the area of the region enclosed by the graph of f and the line L .

[6]
c(i) and (ii).
Answer/Explanation

Markscheme

correctly finding the derivative of  \({{\rm{e}}^{2x}}\) , i.e. \(2{{\rm{e}}^{2x}}\)     A1

correctly finding the derivative of  \(\cos x\) , i.e. \( – \sin x\)     A1

evidence of using the product rule, seen anywhere     M1

e.g. \(f'(x) = 2{{\rm{e}}^{2x}}\cos x – {{\rm{e}}^{2x}}\sin x\)

\(f'(x) = 2{{\rm{e}}^{2x}}(2\cos x – \sin x)\)     AG     N0

[3 marks]

a.

evidence of finding \(f(0) = 1\) , seen anywhere     A1

attempt to find the gradient of f     (M1)

e.g. substituting \(x = 0\) into \(f'(x)\)

value of the gradient of f     A1

e.g. \(f'(0) = 2\) , equation of tangent is \(y = 2x + 1\)

gradient of normal \( = – \frac{1}{2}\)     (A1)

\(y – 1 = – \frac{1}{2}x\left( {y = – \frac{1}{2}x + 1} \right)\)     A1     N3

[5 marks]

b.

(i) evidence of equating correct functions     M1

e.g. \({{\rm{e}}^{2x}}\cos x = – \frac{1}{2}x + 1\) , sketch showing intersection of graphs    

\(x = 1.56\)     A1     N1

(ii) evidence of approach involving subtraction of integrals/areas     (M1)

e.g. \(\int {\left[ {f(x) – g(x)} \right]} {\rm{d}}x\) , \(\int {f(x)} {\rm{d}}x – {\text{area under trapezium}}\)

fully correct integral expression     A2

e.g. \(\int_0^{1.56} {\left[ {{{\rm{e}}^{2x}}\cos x – \left( { – \frac{1}{2}x + 1} \right)} \right]} {\rm{d}}x\) , \(\int_0^{1.56} {{{\rm{e}}^{2x}}\cos x} {\rm{d}}x – 0.951 \ldots \)

\({\rm{area}} = 3.28\)     A1     N2

[6 marks]

c(i) and (ii).
Scroll to Top