IBDP Maths AA: Topic: SL 5.6: Derivatives: IB style Questions SL Paper 2

Question

Let \(f(x) = 3\sin x + 4\cos x\) , for \( – 2\pi  \le x \le 2\pi \) .

Sketch the graph of f .

[3]
a.

Write down

(i)     the amplitude;

(ii)    the period;

(iii)   the x-intercept that lies between \( – \frac{\pi }{2}\) and 0.

[3]
b.

Hence write \(f(x)\) in the form \(p\sin (qx + r)\) .

[3]
c.

Write down one value of x such that \(f'(x) = 0\) .

[2]
d.

Write down the two values of k for which the equation \(f(x) = k\) has exactly two solutions.

[2]
e.

Let \(g(x) = \ln (x + 1)\) , for \(0 \le x \le \pi \) . There is a value of x, between \(0\) and \(1\), for which the gradient of f is equal to the gradient of g. Find this value of x.

[5]
f.
Answer/Explanation

Markscheme

 


     A1A1A1     N3

 

Note: Award A1 for approximately sinusoidal shape, A1 for end points approximately correct \(( – 2\pi {\text{, }}4)\) \((2\pi {\text{, }}4)\), A1 for approximately correct position of graph, (y-intercept \((0{\text{, }}4)\), maximum to right of y-axis).

[3 marks]

a.

(i) 5     A1     N1

(ii) \(2\pi \)  (6.28)     A1     N1

(iii) \( – 0.927\)     A1     N1

[3 marks]

b.

\(f(x) = 5\sin (x + 0.927)\) (accept \(p = 5\) , \(q = 1\) , \(r = 0.927\) )     A1A1A1     N3

[3 marks]

c.

evidence of correct approach     (M1)

e.g. max/min, sketch of \(f'(x)\) indicating roots


one 3 s.f. value which rounds to one of \( – 5.6\), \( – 2.5\), \(0.64\), \(3.8\)     A1     N2

 

[2 marks]

 

 

d.

\(k = – 5\) , \(k = 5\)     A1A1     N2

[2 marks]

e.

METHOD 1

graphical approach (but must involve derivative functions)     M1

e.g.


each curve     A1A1

\(x = 0.511\)     A2     N2

METHOD 2

\(g'(x) = \frac{1}{{x + 1}}\)     A1

\(f'(x) = 3\cos x – 4\sin x\)     \((5\cos (x + 0.927))\)     A1

evidence of attempt to solve \(g'(x) = f'(x)\)     M1

\(x = 0.511\)     A2     N2

[5 marks]

f.

Question

Consider \(f(x) = x\ln (4 – {x^2})\) , for \( – 2 < x < 2\) . The graph of f is given below.


Let P and Q be points on the curve of f where the tangent to the graph of f is parallel to the x-axis.

(i)     Find the x-coordinate of P and of Q.

(ii)    Consider \(f(x) = k\) . Write down all values of k for which there are exactly two solutions.

[5]
a(i) and (ii).

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Show that \(g'(x) = \frac{{ – 2{x^4}}}{{4 – {x^2}}} + 3{x^2}\ln (4 – {x^2})\) .

[4]
b.

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Sketch the graph of \(g’\) .

[2]
c.

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Consider \(g'(x) = w\) . Write down all values of w for which there are exactly two solutions.

[3]
d.
Answer/Explanation

Markscheme

(i) \( – 1.15{\text{, }}1.15\)     A1A1     N2

(ii) recognizing that it occurs at P and Q     (M1)

e.g. \(x = – 1.15\) , \(x = 1.15\)

\(k = – 1.13\) , \(k = 1.13\)     A1A1     N3

[5 marks]

a(i) and (ii).

evidence of choosing the product rule     (M1)

e.g. \(uv’ + vu’\)

derivative of \({x^3}\) is \(3{x^2}\)     (A1)

derivative of \(\ln (4 – {x^2})\) is \(\frac{{ – 2x}}{{4 – {x^2}}}\)     (A1)

correct substitution     A1

e.g. \({x^3} \times \frac{{ – 2x}}{{4 – {x^2}}} + \ln (4 – {x^2}) \times 3{x^2}\)

\(g'(x) = \frac{{ – 2{x^4}}}{{4 – {x^2}}} + 3{x^2}\ln (4 – {x^2})\)     AG     N0

[4 marks]

b.


     A1A1     N2

[2 marks]

c.

\(w = 2.69\) , \(w < 0\)     A1A2     N2

[3 marks]

d.

Question

Let \(f(x) = x\cos x\) , for \(0 \le x \le 6\) .

Find \(f'(x)\) .

[3]
a.

On the grid below, sketch the graph of \(y = f'(x)\) .


[4]
b.
Answer/Explanation

Markscheme

evidence of choosing the product rule     (M1)

e.g. \(x \times ( – \sin x) + 1 \times \cos x\)

\(f'(x) = \cos x – x\sin x\)     A1A1     N3

[3 marks]

a.


     A1A1A1A1     N4

Note: Award A1 for correct domain, \(0 \le x \le 6\) with endpoints in circles, A1 for approximately correct shape, A1 for local minimum in circle, A1 for local maximum in circle.

[4 marks]

b.

Question

Let \(f(x) = \cos 2x\) and \(g(x) = \ln (3x – 5)\) .

Find \(f'(x)\) .

[2]
a.

Find \(g'(x)\) .

[2]
b.

Let \(h(x) = f(x) \times g(x)\) . Find \(h'(x)\) .

[2]
c.
Answer/Explanation

Markscheme

(a) \(f'(x) = – \sin 2x \times 2( = – 2\sin 2x)\)     A1A1     N2

Note: Award A1 for 2, A1 for \( – \sin 2x\) .

[2 marks]

a.

\(g'(x) = 3 \times \frac{1}{{3x – 5}}\) \(\left( { = \frac{3}{{3x – 5}}} \right)\)     A1A1     N2

Note: Award A1 for 3, A1 for \(\frac{1}{{3x – 5}}\) .

[2 marks]

b.

evidence of using product rule     (M1)

\(h'(x) = (\cos 2x)\left( {\frac{3}{{3x – 5}}} \right) + \ln (3x – 5)( – 2\sin 2x)\)     A1     N2 

[2 marks]

c.

Question

Let \(f(x) = \sqrt[3]{{{x^4}}} – \frac{1}{2}\).

Find \(f'(x)\).

[2]
a.

Find \(\int {f(x){\text{d}}x} \).

[4]
b.
Answer/Explanation

Markscheme

expressing \(f\) as \({x^{\frac{4}{3}}}\)     (M1)

\(f'(x) = \frac{4}{3}{x^{\frac{1}{3}}}{\text{   }}\left( { = \frac{4}{3}\sqrt[3]{x}} \right)\)     A1     N2

[2 marks]

a.

attempt to integrate \({\sqrt[3]{{{x^4}}}}\)     (M1)

eg     \(\frac{{{x^{\frac{4}{3} + 1}}}}{{\frac{4}{3} + 1}}\)

\(\int {f(x){\text{d}}x = \frac{3}{7}{x^{\frac{7}{3}}} – \frac{x}{2} + c} \)     A1A1A1     N4

[4 marks]

b.

Question

Let \(f(x) = \frac{1}{{x – 1}} + 2\), for \(x > 1\).

Let \(g(x) = a{e^{ – x}} + b\), for \(x \geqslant 1\). The graphs of \(f\) and \(g\) have the same horizontal asymptote.

Write down the equation of the horizontal asymptote of the graph of \(f\).

[2]
a.

Find \(f'(x)\).

[2]
b.

Write down the value of \(b\).

[2]
c.

Given that \(g'(1) =  – e\), find the value of \(a\).

[4]
d.

There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have the same gradient. Find this gradient.

[4]
e.
Answer/Explanation

Markscheme

\(y = 2\) (correct equation only)     A2     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({(x – 1)^{ – 1}} + 2,{\text{ }}f'(x) = \frac{{0(x – 1) – 1}}{{{{(x – 1)}^2}}}\)

\( – {(x – 1)^{ – 2}},{\text{ }}f'(x) = \frac{{ – 1}}{{{{(x – 1)}^2}}}\)    A1     N2

[2 marks]

b.

correct equation for the asymptote of \(g\)

eg\(\,\,\,\,\,\)\(y = b\)     (A1)

\(b = 2\)     A1     N2

[2 marks]

c.

correct derivative of g (seen anywhere)     (A2)

eg\(\,\,\,\,\,\)\(g'(x) =  – a{{\text{e}}^{ – x}}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\( – {\text{e}} =  – a{{\text{e}}^{ – 1}}\)

7.38905

\(a = {{\text{e}}^2}{\text{ }}({\text{exact}}),{\text{ }}7.39\)     A1     N2

[4 marks]

d.

attempt to equate their derivatives     (M1)

eg\(\,\,\,\,\,\)\(f'(x) = g'(x),{\text{ }}\frac{{ – 1}}{{{{(x – 1)}^2}}} =  – a{{\text{e}}^{ – x}}\)

valid attempt to solve their equation     (M1)

eg\(\,\,\,\,\,\)correct value outside the domain of \(f\) such as 0.522 or 4.51,

M16/5/MATME/SP2/ENG/TZ2/09.e/M

correct solution (may be seen in sketch)     (A1)

eg\(\,\,\,\,\,\)\(x = 2,{\text{ }}(2,{\text{ }} – 1)\)

gradient is \( – 1\)     A1     N3

[4 marks]

e.

Question

Let \(f(x) = {({x^2} + 3)^7}\). Find the term in \({x^5}\) in the expansion of the derivative, \(f’(x)\).

Answer/Explanation

Markscheme

METHOD 1 

derivative of \(f(x)\)     A2

\(7{({x^2} + 3)^6}(x2)\)

recognizing need to find \({x^4}\) term in \({({x^2} + 3)^6}\) (seen anywhere)     R1

eg\(\,\,\,\,\,\)\(14x{\text{ (term in }}{x^4})\)

valid approach to find the terms in \({({x^2} + 3)^6}\)     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 6 \\ r \end{array}} \right){({x^2})^{6 – r}}{(3)^r},{\text{ }}{({x^2})^6}{(3)^0} + {({x^2})^5}{(3)^1} +  \ldots \), Pascal’s triangle to 6th row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)\({\text{5th term, }}r = 2,{\text{ }}\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right),{\text{ }}{({x^2})^2}{(3)^4}\)

correct working (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right){({x^2})^2}{(3)^4},{\text{ }}15 \times {3^4},{\text{ }}14x \times 15 \times 81{({x^2})^2}\)

\(17010{x^5}\)     A1     N3

METHOD 2

recognition of need to find \({x^6}\) in \({({x^2} + 3)^7}\) (seen anywhere) R1 

valid approach to find the terms in \({({x^2} + 3)^7}\)     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 7 \\ r \end{array}} \right){({x^2})^{7 – r}}{(3)^r},{\text{ }}{({x^2})^7}{(3)^0} + {({x^2})^6}{(3)^1} +  \ldots \), Pascal’s triangle to 7th row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)6th term, \(r = 3,{\text{ }}\left( {\begin{array}{*{20}{c}} 7 \\ 3 \end{array}} \right),{\text{ (}}{{\text{x}}^2}{)^3}{(3)^4}\)

correct working (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 7 \\ 4 \end{array}} \right){{\text{(}}{{\text{x}}^2})^3}{(3)^4},{\text{ }}35 \times {3^4}\)

correct term     (A1)

\(2835{x^6}\)

differentiating their term in \({x^6}\)     (M1)

eg\(\,\,\,\,\,\)\((2835{x^6})’,{\text{ (6)(2835}}{{\text{x}}^5})\)

\(17010{x^5}\)     A1     N3

[7 marks]

Question

[without GDC]

 Let \(f(x)=\frac{3x^{2}}{5x-1}\)

(a)  Write down the equation of the vertical asymptote of  \(y=f(x)\).

(b)   Find  \(f'(x)\). Give your answer in the form \(\frac{ax^{2}+bx}{(5x-1)^{2}}\) where \(a\) and \(b \, \epsilon\, \mathbb{Z}\).

Answer/Explanation

Ans

(a)   \(x=\frac{1}{5}\)

(b)    \(f'(x)=\frac{(5x-1)(6x)-(3x^{2})(5)}{(5x-1)^{2}}=\frac{30x^{2}-6x-15x^{2}}{(5x-1)^{2}}=\frac{15x^{2}-6x}{(5x-1)^{2}}\)

Scroll to Top