IBDP Maths SL 1.9 The binomial theorem AA HL Paper 2- Exam Style Questions- New Syllabus
Let \( z = r(\cos \alpha + \text{i} \sin \alpha) \), where \(\alpha\) is measured in degrees, be the solution of \( z^5 – 1 = 0 \) which has the smallest positive argument.
(a)
(i) Use the binomial theorem to expand \( (\cos \theta + \text{i} \sin \theta)^5 \). [2 marks]
(ii) Hence use De Moivre’s theorem to prove \( \sin 5\theta = 5 \cos^4 \theta \sin \theta – 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta \). [2 marks]
(iii) State a similar expression for \( \cos 5\theta \) in terms of \( \cos \theta \) and \( \sin \theta \). [2 marks]
(b) Find the value of \( r \) and the value of \( \alpha \). [4 marks]
(c) Using (a)(ii) and your answer from (b), show that \( 16 \sin^4 \alpha – 20 \sin^2 \alpha + 5 = 0 \). [4 marks]
(d) Hence express \( \sin 72^\circ \) in the form \( \frac{\sqrt{a + b \sqrt{c}}}{d} \), where \( a, b, c, d \in \mathbb{Z} \). [5 marks]
▶️ Answer/Explanation
(a) (i) Expand \( (\cos \theta + \text{i} \sin \theta)^5 \) using the binomial theorem:
\( (\cos \theta + \text{i} \sin \theta)^5 = \sum_{k=0}^5 \binom{5}{k} (\cos \theta)^{5-k} (\text{i} \sin \theta)^k \)
\( = \cos^5 \theta + 5 \cos^4 \theta (\text{i} \sin \theta) + 10 \cos^3 \theta (\text{i} \sin \theta)^2 + 10 \cos^2 \theta (\text{i} \sin \theta)^3 + 5 \cos \theta (\text{i} \sin \theta)^4 + (\text{i} \sin \theta)^5 \). A1 (for correct binomial coefficients)
\( = \cos^5 \theta + 5 \text{i} \cos^4 \theta \sin \theta – 10 \cos^3 \theta \sin^2 \theta – 10 \text{i} \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta + \text{i} \sin^5 \theta \). A1
[2 marks]
(a) (ii) By De Moivre’s theorem: \( (\cos \theta + \text{i} \sin \theta)^5 = \cos 5\theta + \text{i} \sin 5\theta \). M1
Equate imaginary parts of the expansion from (i):
\( \sin 5\theta = 5 \cos^4 \theta \sin \theta – 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta \). M1 A1
[2 marks]
(a) (iii) Equate real parts from (i):
\( \cos 5\theta = \cos^5 \theta – 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta \). A1
[2 marks]
(b) Solve \( z^5 – 1 = 0 \), where \( z = r (\cos \alpha + \text{i} \sin \alpha) \):
\( z^5 = 1 \Rightarrow (r \text{cis} \alpha)^5 = 1 \text{cis} 0 \). M1
\( r^5 = 1 \Rightarrow r = 1 \). A1
\( \text{cis} 5\alpha = \text{cis} 0 \Rightarrow 5\alpha = 0 + 360k, k \in \mathbb{Z} \Rightarrow \alpha = 72k \). M1
Smallest positive \(\alpha\): \( \alpha = 72^\circ \) (for \( k = 1 \)). A1
Note: Award M1A0 if final answer is in radians.
[4 marks]
(c) Use \( \sin 5\alpha = 0 \) (since \( 5 \cdot 72^\circ = 360^\circ \)) and the result from (a)(ii): M1
\( 0 = 5 \cos^4 \alpha \sin \alpha – 10 \cos^2 \alpha \sin^3 \alpha + \sin^5 \alpha \). A1
Since \( \sin \alpha \neq 0 \), divide by \( \sin \alpha \):
\( 0 = 5 \cos^4 \alpha – 10 \cos^2 \alpha \sin^2 \alpha + \sin^4 \alpha \). M1
Substitute \( \cos^2 \alpha = 1 – \sin^2 \alpha \):
\( 0 = 5 (1 – \sin^2 \alpha)^2 – 10 (1 – \sin^2 \alpha) \sin^2 \alpha + \sin^4 \alpha \). A1
Expand and simplify: \( 0 = 5 (1 – 2 \sin^2 \alpha + \sin^4 \alpha) – 10 \sin^2 \alpha + 10 \sin^4 \alpha + \sin^4 \alpha \).
\( 0 = 5 – 10 \sin^2 \alpha + 5 \sin^4 \alpha – 10 \sin^2 \alpha + 10 \sin^4 \alpha + \sin^4 \alpha \).
\( 0 = 16 \sin^4 \alpha – 20 \sin^2 \alpha + 5 \). AG
[4 marks]
(d) Solve the quadratic in \( u = \sin^2 \alpha \): \( 16u^2 – 20u + 5 = 0 \). M1
\( u = \frac{20 \pm \sqrt{400 – 320}}{32} = \frac{20 \pm \sqrt{80}}{32} \). A1
\( \sin \alpha = \pm \sqrt{\frac{20 \pm \sqrt{80}}{32}} = \pm \sqrt{\frac{10 \pm 2 \sqrt{5}}{16}} = \pm \frac{\sqrt{10 \pm 2 \sqrt{5}}}{4} \). A1
Since \( \alpha = 72^\circ > 60^\circ \), \( \sin 72^\circ > \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.866 \), choose positive signs: R1
\( \sin 72^\circ = \frac{\sqrt{10 + 2 \sqrt{5}}}{4} \). A1
Note: Award A1 regardless of signs. Accept equivalent forms with integral denominator.
[5 marks]
Total [19 marks]