IBDP Maths AA: Topic : Topic SL 5.3 Derivative of f(x): IB style Questions HL Paper 2

Question

Let \(f(x) = p{x^3} + p{x^2} + qx\).

a.Find \(f'(x)\).[2]

 

b.Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).[5]

 
▶️Answer/Explanation

Markscheme

\(f'(x) = 3p{x^2} + 2px + q\)     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     \({b^2} – 4ac\)

correct substitution into discriminant (may be seen in inequality)     A1

eg     \({(2p)^2} – 4 \times 3p \times q,{\text{ }}4{p^2} – 12pq\)

\(f'(x) \geqslant 0\) then \(f’\) has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     \(\Delta  \leqslant 0,{\text{ }}4{p^2} – 12pq \leqslant 0\)

correct working that clearly leads to the required answer     A1

eg     \({p^2} – 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)

\({p^2} \leqslant 3pq\)     AG     N0

[5 marks]

 

Question

 If \(y=\ln (2x-1)\), find \(\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}\).

▶️Answer/Explanation

Ans

\(y=\ln (2x-1)\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{2x-1}\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=2(2x-1)^{-1}\)

\(\Rightarrow \frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=-2(2x-1)^{-2}(2)\)

\(\Rightarrow \frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=\frac{-4}{(2x-1)^{2}}\)

Question

Let \(y=\sin (kx)-kx\cos (kx)\), where \(k\) is a constant. Show that \(\frac{\mathrm{d} y}{\mathrm{d} x}=k^{2}x\sin (kx)\)

▶️Answer/Explanation

Ans

\(y=\sin (kx)-kx\cos (kx)\)

\(\frac{\mathrm{d} y}{\mathrm{d} x}=k\cos(kx)-k\left \{\cos (kx)+x[-k\ sin (kx)] \right \}\)

\(=k \cos (kx)-k \cos(kx)+k^{2}x\ sin (kx)=k^{2}x\ sin (kx)\)

Question

Consider the function \(f(x)=\ln \sqrt{x^{2}+4}\). Find      (a) \(f'(x)\)           (b) \({f}”(x)\)

▶️Answer/Explanation

Ans

(a)    METHOD 1

\(f(x)=\frac{1}{2}\ln (x^{2}+4)\)

\(f'(x)=\frac{1}{2}\left ( \frac{2x}{x^{2}+4} \right )\)

\(f'(x)=\frac{x}{x^{2}+4}\)

         METHOD 2

\(f'(x)=\frac{1}{\sqrt{x^{2}+4}}\times \frac{1}{2}\left ( x^{2}+4 \right )^{-\frac{1}{2}}(2x)\)

\(=\frac{x}{x^{2}+4}\)

(b)     \({f}”(x)=\frac{x^{2}+4-x(2x)}{(x^{2}+4)^{2}}\)

\(=\frac{4-x^{2}}{(x^{2}+4)^{2}}\)

Question

Consider the function  \(f(t)=3\sec ^{2}t+5t\).  Find  (a) \(f'(t)\).            (b) (ⅰ) \(f(\pi )\);     (ⅱ) \(f'(\pi )\);

▶️Answer/Explanation

Ans

(a)     METHOD 1

\(f(t)=3\sec ^{2}t+5t=3(\cos t)^{-2}+5t\)

\(f(t)=-6(\cos t)^{-3}(-\sin t)+5=\frac{6\sin t}{cos^{3}t}+5\)

METHOD 2

\(f'(t)=3\times 2\sec t(\sec t\tan t)+5\)

\(=6\sec ^{2}t \tan t+5(=6\tan ^{2}t+6 \tan t+5)\)

(b)     \(f(\pi )=\frac{3}{(\cos \pi )^{2}}+5\pi =3+5\pi\)

\(f'(\pi )=\frac{6\sin \pi }{(\cos \pi )^{3}}+5=5\)

Question

The function \(f\) is defined by \(f:x\mapsto 3^{x}\). Find the solution of the equation \({f}”(x)=2\).

▶️Answer/Explanation

Ans 

\(f(x)=3^{x}\Rightarrow f(x)=3^{x}\ln 3\)

\(\Rightarrow f'(x)=3^{x}(\ln 3)^{2}\)

\(3^{x}(\ln 3)^{2}=2\)

\(3^{x}=\frac{2}{(\ln 3)^{2}}\)

\(x\ln 3=\ln \left ( \frac{2}{(\ln 3)^{2}} \right )\)

\(x=\frac{\ln \left ( \frac{2}{(\ln 3)^{2}} \right )}{\ln 3}\)

\(=0.460\)

Question

Let \(y=e^{3x}\sin (\pi x)\).    Find (a) \(\frac{\mathrm{d} y}{\mathrm{d} x}\).        (b) the smallest positive value of \(x\) for which \(\frac{\mathrm{d} y}{\mathrm{d} x}=0\)

▶️Answer/Explanation

Ans   

\(y=e^{3x}\sin (\pi x)\)

(a)     \(\frac{\mathrm{d} y}{\mathrm{d} x}=3e^{3x}\sin (\pi x)+\pi e^{3x}\cos (\pi x)\)

(b)     \(0=e^{3x}(3\sin(\pi x)+\pi \cos (\pi x))\)

\(tan (\pi x)=-\frac{\pi }{3}\)

\(\pi x=-0.80845+\pi\)

\(x=0.7426… (0.743 to 3s.f.)\)

Scroll to Top