IBDP Maths AA: Topic SL 5.3 Derivative of f(x): IB style Questions SL Paper 2

Question

Let y = \(\frac{Inx}{x^{4}}\) for x > 0.

(a)        Show that \(\frac{dy}{dx}= \frac{1-4Inx}{x^{5}}\)

Consider the function defined  by f (x) \(\frac{Inx}{x^{4}}\) =  for x> 0 and its graph y = f (x) .

(b)        The graph of has a horizontal tangent at point P. Find the coordinates of P.                                                      [5]

(c)        Given that f ” (x) = \(\frac{20Lnx-9}{x^{6}}\) show that P is a local maximum point.                                                [3]

(d)        Solve f (x) > 0 for x > 0.                                                                                                                                                          [2]

(e) Sketch the graph of f , showing clearly the value of the x-intercept and the approximate position of point P.    [3]

Answer/Explanation

Ans

Question

Let \(f(x) = {{\rm{e}}^{ – 3x}}\) and \(g(x) = \sin \left( {x – \frac{\pi }{3}} \right)\) .

Write down

(i)     \(f'(x)\) ;

(ii)    \(g'(x)\) .

[2]
a.

Let \(h(x) = {{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right)\) . Find the exact value of \(h’\left( {\frac{\pi }{3}} \right)\) .

[4]
b.
Answer/Explanation

Markscheme

(i) \( – 3{{\rm{e}}^{ – 3x}}\)     A1     N1

(ii) \(\cos \left( {x – \frac{\pi }{3}} \right)\)     A1     N1

[4 marks]

a.

evidence of choosing product rule     (M1)

e.g. \(uv’ + vu’\)

correct expression     A1

e.g. \( – 3{{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3x}}\cos \left( {x – \frac{\pi }{3}} \right)\)

complete correct substitution of \(x = \frac{\pi }{3}\)     (A1)

e.g. \( – 3{{\rm{e}}^{ – 3\frac{\pi }{3}}}\sin \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3\frac{\pi }{3}}}\cos \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right)\)        

\(h’\left( {\frac{\pi }{3}} \right) = {{\rm{e}}^{ – \pi }}\)     A1     N3

[4 marks]

b.

Question

Consider \(f(x) = {x^2} + \frac{p}{x}\) , \(x \ne 0\) , where p is a constant.

Find \(f'(x)\) .

[2]
a.

There is a minimum value of \(f(x)\) when \(x = – 2\) . Find the value of \(p\) .

[4]
b.
Answer/Explanation

Markscheme

\(f'(x) = 2x – \frac{p}{{{x^2}}}\)     A1A1     N2

Note: Award A1 for \(2x\) , A1 for \( – \frac{p}{{{x^2}}}\) .

[2 marks]

a.

evidence of equating derivative to 0 (seen anywhere)     (M1)

evidence of finding \(f'( – 2)\) (seen anywhere)     (M1)

correct equation     A1

e.g. \( – 4 – \frac{p}{4} = 0\) , \( – 16 – p = 0\)

\(p = – 16\)     A1     N3

[4 marks]

b.

Question

Let \(f(x) = p{x^3} + p{x^2} + qx\).

Find \(f'(x)\).

[2]
a.

Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).

[5]
b.
Answer/Explanation

Markscheme

\(f'(x) = 3p{x^2} + 2px + q\)     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     \({b^2} – 4ac\)

correct substitution into discriminant (may be seen in inequality)     A1

eg     \({(2p)^2} – 4 \times 3p \times q,{\text{ }}4{p^2} – 12pq\)

\(f'(x) \geqslant 0\) then \(f’\) has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     \(\Delta  \leqslant 0,{\text{ }}4{p^2} – 12pq \leqslant 0\)

correct working that clearly leads to the required answer     A1

eg     \({p^2} – 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)

\({p^2} \leqslant 3pq\)     AG     N0

[5 marks]

b.

Question

Consider the function  \(f(t)=3\sec ^{2}t+5t\).  Find  (a) \(f'(t)\).            (b) (ⅰ) \(f(\pi )\);     (ⅱ) \(f'(\pi )\);

Answer/Explanation

Ans

(a)     METHOD 1

\(f(t)=3\sec ^{2}t+5t=3(\cos t)^{-2}+5t\)

\(f(t)=-6(\cos t)^{-3}(-\sin t)+5=\frac{6\sin t}{cos^{3}t}+5\)

METHOD 2

\(f'(t)=3\times 2\sec t(\sec t\tan t)+5\)

\(=6\sec ^{2}t \tan t+5(=6\tan ^{2}t+6 \tan t+5)\)

(b)     \(f(\pi )=\frac{3}{(\cos \pi )^{2}}+5\pi =3+5\pi\)

\(f'(\pi )=\frac{6\sin \pi }{(\cos \pi )^{3}}+5=5\)

Scroll to Top