Home / IBDP Maths AI: Topic : AHL 1.11: The sum of infinite geometric sequences: IB style Questions HL Paper 1

IBDP Maths AI: Topic : AHL 1.11: The sum of infinite geometric sequences: IB style Questions HL Paper 1

Question

 The sum of an infinite geometric sequence is 9.
The first term is 4 more than the second term.
Find the third term. Justify your answer.

▶️Answer/Explanation

Ans:

Question

[Maximum mark: 8]
Consider the geometric sequence 10, 5, 2.5, 1.25, …
(a) Express the general term nu in terms of n .                                                                                                                                                                           [1]
(b) Find the first term which is smaller than 10-3 = 0.001.                                                                                                                                                     [3]
(c) Find the sum of the first 20 terms correct to 6 decimal places.                                                                                                                                   [2]
(d) Find the sum of the infinite series.

▶️Answer/Explanation

Answer:

(a) 10 x 0.5n-1 (= 20 x 0.5n )
(b) 0.000610
(c) 19.999981
(d) 20

Question

[Maximum mark: 6]
Find the sum of each of the following infinite geometric series

(i)  \( 1+\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+…\)     (ii)    \(1-\frac{2}{5}+\frac{4}{25}-\frac{8}{25}+…\)

▶️Answer/Explanation

Answer:

(a) 5/3 (b) 5/7

Question

[Maximum mark: 6]
Calculate the following sums by using the appropriate formulas

(i)        \(\sum_{k=1}^{6}4^{k}\)            (ii)      \(\sum_{k=11}^{6}(0.25)^{k}\)  (correct to 6 dp)             (iii)   \(\sum_{k=11}^{+\infty }(0.25)^{k}\)

▶️Answer/Explanation

Answer:

a. \(\frac{4(4^{6-1})}{4-1}=5460\)     b. \(\frac{0.25(1-0.25^{6})}{1-0.25}=0.333252\)    c. \(\frac{0.25}{1-0.25}=\frac{1}{3}\)

Question

Maximum mark: 5]
Consider the infinite geometric sequence 3, 3(0.9), 3(0.9)2, 3(0.9)3, … .
(a) Write down the 10th term of the sequence. Do not simplify your answer. [1]
(b) Find the sum of the infinite sequence. [4]

▶️Answer/Explanation

Answer:

a. \(u^{10}=3(0.9)^{9}\)

b. \(S=\frac{3}{1-0.9}=\frac{3}{0.1}=30\)

Scroll to Top