Home / IBDP Maths AI: Topic : AHL 1.14: Definition of a matrix: IB style Questions HL Paper 1

IBDP Maths AI: Topic : AHL 1.14: Definition of a matrix: IB style Questions HL Paper 1

Question 

$(a) R(2\alpha) = \begin{pmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix}$

$(b) R(\alpha) \times R(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \times \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \cos^2(\alpha)-\sin^2(\alpha) & -2\sin(\alpha)\cos(\alpha) \\ 2\sin(\alpha)\cos(\alpha) & \cos^2(\alpha)-\sin^2(\alpha) \end{pmatrix}$

$(c) \ (i) \text{ Comparing the elements in the first row, second column of the matrices in parts (a) and (b), we get:}$
$-\sin(2\alpha) = -2\sin(\alpha)\cos(\alpha)$
$\Rightarrow \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$

$(ii) \ \text{ Comparing the elements in the first row, first column of the matrices in parts (a) and (b), we get:}$
$\cos(2\alpha) = \cos^2(\alpha)-\sin^2(\alpha)$
$\text{Using the identity } \sin^2(\alpha)+\cos^2(\alpha)=1, \text{ we can rewrite this as:}$
$\cos(2\alpha) = 1 – 2\sin^2(\alpha)$

▶️Answer/Explanation

Detailed Solution

Part (a): Given Rotation Matrix \( R(2\alpha) \)
The matrix is:

\[ R(2\alpha) = \begin{pmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \]

This is the standard form of a 2D rotation matrix for an angle \( 2\alpha \), which rotates a vector counterclockwise by \( 2\alpha \) radians. No computation is needed here; it’s provided as a reference.

Part (b): Compute \( R(\alpha) \times R(\alpha) \)
We’re given:

\[ R(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \]

We need to verify the matrix multiplication:

\[ R(\alpha) \times R(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \times \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \]

Perform the multiplication:

Element (1,1):
\[ \cos(\alpha) \cdot \cos(\alpha) + (-\sin(\alpha)) \cdot \sin(\alpha) = \cos^2(\alpha) – \sin^2(\alpha) \]

Element (1,2):
\[ \cos(\alpha) \cdot (-\sin(\alpha)) + (-\sin(\alpha)) \cdot \cos(\alpha) = -\cos(\alpha)\sin(\alpha) – \sin(\alpha)\cos(\alpha) = -2\sin(\alpha)\cos(\alpha) \]

Element (2,1):
\[ \sin(\alpha) \cdot \cos(\alpha) + \cos(\alpha) \cdot \sin(\alpha) = \sin(\alpha)\cos(\alpha) + \cos(\alpha)\sin(\alpha) = 2\sin(\alpha)\cos(\alpha) \]

Element (2,2):
\[ \sin(\alpha) \cdot (-\sin(\alpha)) + \cos(\alpha) \cdot \cos(\alpha) = -\sin^2(\alpha) + \cos^2(\alpha) = \cos^2(\alpha) – \sin^2(\alpha) \]

Resulting matrix:

\[ R(\alpha) \times R(\alpha) = \begin{pmatrix} \cos^2(\alpha) – \sin^2(\alpha) & -2\sin(\alpha)\cos(\alpha) \\ 2\sin(\alpha)\cos(\alpha) & \cos^2(\alpha) – \sin^2(\alpha) \end{pmatrix} \]

This matches exactly what you provided in part (b), confirming the multiplication is correct. Geometrically, multiplying two rotation matrices \( R(\alpha) \) represents a rotation by \( \alpha + \alpha = 2\alpha \), so we expect \( R(\alpha) \times R(\alpha) = R(2\alpha) \), which we’ll verify via part (c).

Part (c): Derive Trigonometric Identities

(i) First Row, Second Column Comparison
Compare:

From \( R(2\alpha) \): Element (1,2) = \( -\sin(2\alpha) \)
From \( R(\alpha) \times R(\alpha) \): Element (1,2) = \( -2\sin(\alpha)\cos(\alpha) \)

Equate them:

\[ -\sin(2\alpha) = -2\sin(\alpha)\cos(\alpha) \]

Multiply both sides by \(-1\):

\[ \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \]

This is the standard double-angle identity for sine, which is correct and confirms that the matrix multiplication aligns with the rotation property \( R(\alpha) \times R(\alpha) = R(2\alpha) \).

(ii) First Row, First Column Comparison
Compare:

– From \( R(2\alpha) \): Element (1,1) = \( \cos(2\alpha) \)
– From \( R(\alpha) \times R(\alpha) \): Element (1,1) = \( \cos^2(\alpha) – \sin^2(\alpha) \)

Equate them:

\[ \cos(2\alpha) = \cos^2(\alpha) – \sin^2(\alpha) \]

This is a known double-angle identity for cosine. To derive the alternative form using \( \sin^2(\alpha) + \cos^2(\alpha) = 1 \):

\[ \cos^2(\alpha) – \sin^2(\alpha) = \cos^2(\alpha) – (1 – \cos^2(\alpha)) = \cos^2(\alpha) – 1 + \cos^2(\alpha) = 2\cos^2(\alpha) – 1 \]

Alternatively:

\[ \cos^2(\alpha) – \sin^2(\alpha) = (1 – \sin^2(\alpha)) – \sin^2(\alpha) = 1 – 2\sin^2(\alpha) \]

So:

\[ \cos(2\alpha) = 1 – 2\sin^2(\alpha) \]

This matches your derivation and is another standard form of the cosine double-angle identity. Both forms (\( \cos^2(\alpha) – \sin^2(\alpha) \) and \( 1 – 2\sin^2(\alpha) \)) are equivalent and correct.

…………………………Markscheme…………………………….

Solution: –

(a) $R(2\alpha)$ = \begin{pmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix}

(b) $R(\alpha)$ $R(\alpha)$  = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}
which is =  \begin{pmatrix} \cos^2(\alpha)-\sin^2(\alpha) & -2\cos(\alpha)\sin(\alpha) \\ 2\cos(\alpha)\sin(\alpha) & \cos^2(\alpha)-\sin^2(\alpha) \end{pmatrix}

(c) (i) (Because matrix multiplication represents the composition of transformations, two rotations of $\alpha$ are equivalent to a rotation of $2\alpha$, so the two matrices are equal (so each of their corresponding elements are equal))
$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$

(ii) $\cos(2\alpha) = \cos^2(\alpha)-\sin^2(\alpha)$
replacing $\cos^2(\alpha)$ with $1-\sin^2(\alpha)$
$= 1-\sin^2(\alpha)-\sin^2(\alpha)$
$= 1-2\sin^2(\alpha)$

Question

 The equation of the line y = mx + c can be expressed in vector form r = a + \(\lambda b\).
(a) Find the vectors a and b in terms of m and/or c.
The matrix M is defined by \(\begin{pmatrix}
6 &3 \\
4& 2
\end{pmatrix}\)
(b) Find the value of det M.
The line y = mx + c (where \(m \neq – 2)\) is transformed into a new line using the transformation described by matrix M.
(c) Show that the equation of the resulting line does not depend on m or c.

▶️Answer/Explanation

Ans:

(a) (one vector to the line is \(\binom{1}{m}\) therefore) a= (\(\binom{0}{c} \)
the line goes m up for every 1 across
(so the direction vector is) \(b= ( \binom{1}{m}\)
(b) (from GDC OR \(6 \times 2 – 4 \times 3) \) |M| = 0
(c) METHOD 1
\(\binom{X}{Y} = \begin{pmatrix}
6 & 3\\
4 & 2
\end{pmatrix} \binom{x}{mx+c}= \binom{6x + 3mx + 3c}{4x + 2mx + 2c}\)
therefore the new line has equation 3Y = 2X
which is independent of m or c
METHOD 2
take two points on the line, e.g. (0, c) and (1, m+c)
these map to \(\begin{pmatrix}
6 & 3\\
4 & 2
\end{pmatrix}\binom{0}{c}=\binom{3c}{2c}\)
and \(\begin{pmatrix}
6 & 3\\
4 & 2
\end{pmatrix}\binom{1}{m+c}=\binom{6+3m+3c}{4+2m+2c}\)
therefore a direction vector is \(\binom{6+3m}{4+2m}=(2+m)\binom{3}{2}\)
(since \(\neq -2\)) a direction vector is \(\binom{3}{2}\)
the line passes through \(\binom{3c}{2c})-c \biniom{3}{2} = \binom{0}{0}\) therefore it always has the
origin as a jump-on vector
the vector equation is therefore \(r=\mu \binom{3}{2}\)
which is independent of m or c
METHOD 3
\(r=\begin{pmatrix}
6 & 3\\
4 & 2
\end{pmatrix}(\binom{0}{c}+ \lambda \binom{1}{m})=\binom{3c}{2c}+ \lambda \binom{6+3m}{4+2m}\)
\(=c \binom{3}{2}+(2+m)\lambda \binom{3}{2}\)
\(=\mu \binom{3}{2}\)
where \(\mu=c+(2+m) \lambda\) is an arbitrary parameter.
which is independent of m or c (as \(\mu\) can take any value)

Question

The matrix M is given by

                                             

  1. Justifying your answer, determine the rank of M . [3]

    Let the set S = that is the four columns of M.

  2. Give a reason why S does not span the space of four-dimensional column vectors. [1]

     

  3. Determine whether the vector belongs to the subspace spanned by S . [3]

▶️Answer/Explanation

Ans: 

(a)

using row operations, the matrix becomes for example

this reduced matrix contains 2 independent rows so the rank of M is 2

(b)

in order to span the space of 4-D column vectors, the 4 vectors in S would have to be independent so the rank of M would have to be 4  which it is not

(c)

attempting to solve on GDC, we find that there is an infinite number of solutions  therefore the given vector does belong to the subspace spanned by S

Question

The matrix A is given by A = \(\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right)\).

(a)     Given that A\(^3\) can be expressed in the form A\(^3 = a\)A\(^2 = b\)A \( + c\)I, determine the values of the constants \(a\), \(b\), \(c\).

(b)     (i)     Hence express A\(^{ – 1}\) in the form A\(^{ – 1} = d\)A\(^2 = e\)A \( + f\)I where \(d,{\text{ }}e,{\text{ }}f \in \mathbb{Q}\).

(ii)     Use this result to determine A\(^{ – 1}\).

▶️Answer/Explanation

Markscheme

(a)     successive powers of A are given by

A\(^2 = \) \(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right)\)     (M1)A1

A\(^3 = \) \(\left( {\begin{array}{*{20}{c}}{24}&{35}&{25}\\{25}&{36}&{29}\\{35}&{51}&{36}\end{array}} \right)\)     A1

it follows, considering elements in the first rows, that

\(5a + b + c = 24\)

\(7a + 2b = 35\)

\(6a + b = 25\)     M1A1

solving,     (M1)

\((a,{\text{ }}b,{\text{ }}c) = (3,{\text{ }}7,{\text{ }}2)\)     A1

Note: Accept any other three correct equations.

Note: Accept the use of the Cayley–Hamilton Theorem.

[7 marks]

 

(b)     (i)     it has been shown that

A\(^3 = 3\)A\(^2 + 7\)A\( + 2\)I

multiplying by A\(^{ – 1}\),     M1

A\(^2 = 3\)A\( + 7\)I\( + 2\)A\(^{ – 1}\)     A1

whence

A\(^{ – 1} = 0.5\)A\(^2 – 1.5\)A \( – 3.5\)I     A1

(ii)     substituting powers of A,

A\(^{ – 1} = 0.5\)\(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right) – 1.5\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right) – 3.5\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\)     M1

=\(\left( {\begin{array}{*{20}{c}}{ – 2.5}&{0.5}&{1.5}\\{1.5}&{ – 0.5}&{ – 0.5}\\{0.5}&{0.5}&{ – 0.5}\end{array}} \right)\)    A1

Note: Follow through their equation in (b)(i).

Note: Line (ii) of (ii) must be seen.

[5 marks]

Question

A matrix M is called idempotent if M\(^2 = \) M.

The idempotent matrix N has the form

N \( = \left( {\begin{array}{*{20}{c}} a&{ – 2a} \\ a&{ – 2a} \end{array}} \right)\)

where \(a \ne 0\).

a.(i)     Explain why M is a square matrix.

(ii)     Find the set of possible values of det(M).[4]

b.(i)     Find the value of \(a\).

(ii)     Find the eigenvalues of N.

(iii)     Find corresponding eigenvectors.[12]

 
▶️Answer/Explanation

Markscheme

(i)     M\(^2 = \) MM only exists if the number of columns of M equals the number of rows of M     R1

hence M is square     AG

(ii)     apply the determinant function to both sides     M1

\(\det (\)M\(^2) = \det (\)M\()\)

use the multiplicative property of the determinant

\(\det (\)M\(^2) = \det (\)M\(){\text{ }}\det (\)M\() = \det (\)M\()\)     (M1)

hence \(\det (\)M\() = 0\) or 1     A1

[4 marks]

a.

(i)     attempt to calculate N\(^2\)        M1

obtain \(\left( {\begin{array}{*{20}{c}} { – {a^2}}&{2{a^2}} \\ { – {a^2}}&{2{a^2}} \end{array}} \right)\)        A1

equating to N        M1

to obtain \(a =  – 1\)        A1

(ii)     N \( = \left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\)

N \( – \lambda \)I \( = \left( {\begin{array}{*{20}{c}} { – 1 – \lambda }&2 \\ { – 1}&{2 – \lambda } \end{array}} \right)\)        M1

\(( – 1 – \lambda )(2 – \lambda ) + 2 = 0\)       (A1)

\({\lambda ^2} – \lambda  = 0\)       (A1)

\(\lambda \) is 1 or 0        A1

(iii)     let \(\lambda  = 1\)

to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right){\text{ or }}\left( {\begin{array}{*{20}{c}} { – 2}&2 \\ { – 1}&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\)        M1

hence eigenvector is \(\left( {\begin{array}{*{20}{c}} x \\ x \end{array}} \right)\)        A1

let \(\lambda  = 0\)

to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\)        M1

hence eigenvector is \(\left( {\begin{array}{*{20}{c}} {2y} \\ y \end{array}} \right)\)        A1

Note:     Accept specific eigenvectors.

[12 marks]

b.

Question

Let A2 = 2A + I where A is a 2 × 2 matrix.

a.Show that A4 = 12A + 5I.[3]

b.Let B = \(\left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ – 3}
\end{array}} \right]\).

Given that B2B – 4I = \(\left[ {\begin{array}{*{20}{c}}
k&0 \\
0&k
\end{array}} \right]\), find the value of \(k\).[3]

 
▶️Answer/Explanation

Markscheme

METHOD 1
A4 = 4A2 + 4AI + I2 or equivalent M1A1
= 4(2A + I) + 4A + I A1
= 8A + 4I + 4A + I
= 12A + 5I AG

[3 marks]

METHOD 2
A3 = A(2A + I) = 2A2 + AI = 2(2A + I) + A(= 5A + 2I) M1A1
A4 = A(5A + 2I) A1
= 5A2 + 2A = 5(2A + I) + 2A
= 12A + 5I AG

[3 marks]

a.

B2 = \(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right]\) (A1)

\(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ – 3}
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&0 \\
0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{10}&0 \\
0&{10}
\end{array}} \right]\) (A1)

\( \Rightarrow k = 10\) A1

[3 marks]

b.
Scroll to Top