Home / IBDP Maths AI: Topic: AHL 4.14: Linear transformation: IB style Questions HL Paper 2

IBDP Maths AI: Topic: AHL 4.14: Linear transformation: IB style Questions HL Paper 2

Question

The independent random variables X and Y are given by X ~ N\(\left( {{\mu _1},\,\sigma _1^2} \right)\) and Y ~ N\(\left( {{\mu _2},\,\sigma _2^2} \right)\).

Two independent random variables X1 and X2 each have a normal distribution with a mean 3 and a variance 9. Four independent random variables Y1, Y2, Y3, Y4 each have a normal distribution with mean 2 and variance 25. Each of the variables Y1Y2Y3Y4 is independent of each of the variables X1, X2. Find

a.Write down the distribution of aX + bY where a, b \( \in \mathbb{R}\).[2]

b.i.P(X1 + Y1 < 11).[3]

b.ii.P(3X1 + 4Y1 > 15).[4]

b.iii.P(X1X2 + Y1 + Y2 + Y3 + Y4 < 30).[3]

c.Given that \({\bar X}\) and \({\bar Y}\) are the respective sample means, find \({\text{P}}\left( {\bar X > \bar Y} \right)\).[5]

▶️Answer/Explanation

Markscheme

aX + bY ~ N\(\left( {a{\mu _1} + b{\mu _2},\,\,{a^2}\sigma _1^2 + {b^2}\sigma _2^2} \right)\)     A1A1

Note: A1 for N and the mean, A1 for the variance.

[2 marks]

a.

X1 + Y∼ N(5,34)     (A1)(A1)

⇒ P(X1 + Y1 < 11) = 0.848       A1

[3 marks]

b.i.

3X1 + 4Y1 ∼ N(9 + 8, 9 × 9 + 16 × 25)     (A1)(M1)(A1)

Note: Award (A1) for correct expectation, (M1)(A1) for correct variance.

∼ N(17, 481)

⇒ P(3X1 + 4Y1 > 15) = 0.536       A1

[4 marks]

b.ii.

X1 + X2 + Y1 + Y2 + Y3 + Y4 ∼ N(6 + 8, 2 × 9 + 4 × 25)     (A1)(A1)

∼ N(14, 118)

⇒ P(X1 + X2 + Y1 + Y2 + Y3 + Y4 < 30) = 0.930       A1

[3 marks]

b.iii.

consider \(\bar X – \bar Y\)      (M1)

\({\text{E}}\left( {\bar X – \bar Y} \right) = 3 – 2 = 1\)       A1

\({\text{Var}}\left( {\bar X – \bar Y} \right) = \frac{9}{2} + \frac{{25}}{4}\left( { = 10.75} \right)\)      (M1)A1

\( \Rightarrow {\text{P}}\left( {\bar X – \bar Y > 0} \right) = 0.620\)       A1

[5 marks]

c.

Question

In a large population of sheep, their weights are normally distributed with mean \(\mu \) kg and standard deviation \(\sigma \) kg. A random sample of \(100\) sheep is taken from the population.

The mean weight of the sample is \(\bar X\) kg.

a.State the distribution of \(\bar X\) , giving its mean and standard deviation.[2]

b.The sample values are summarized as \(\sum {x = 3782} \) and \(\sum {{x^2} = 155341} \) where \(x\) kg is the weight of a sheep.

(i)     Find unbiased estimates for \(\mu \) and \({\sigma ^2}\).

(ii)     Find a \(95\%\) confidence interval for \(\mu \).[6]

c.Test, at the \(1\%\) level of significance, the null hypothesis \(\mu  = 35\) against the alternative hypothesis that \(\mu  > 35\).[5]

▶️Answer/Explanation

Markscheme

\(\bar X \sim N\left( {\mu ,{\text{ }}\frac{{{\sigma ^2}}}{{100}}} \right)\)     A1A1

Note: Award A1 for \(N\), A1 for the parameters.

a.

(i)     \(\bar x = \frac{{\sum x }}{n} = \frac{{3782}}{{100}} = 37.8\)     A1

\(s_{n – 1}^2 = \frac{{155341}}{{99}} – \frac{{{{3782}^2}}}{{9900}} = 124\)     M1A1

(ii)     \(95\% CI = 37.82 \pm 1.98\sqrt {\frac{{124.3006}}{{100}}} \)     (M1)(A1)

\( = (35.6,{\text{ }}40.0)\)     A1

b.

METHOD 1

one tailed t-test     A1

testing \(37.82\)     A1

\(99\) degrees of freedom

reject if \(t > 2.36\)     A1

t-value being tested is \(2.5294\)     A1

since \(2.5294 > 2.36\) we reject the null hypothesis and accept the alternative hypothesis     R1

METHOD 2

one tailed t-test     (A1)

\(p = 0.00650\)     A3

since \(p{\text{ – value}} < 0.01\) we reject the null hypothesis and accept the alternative hypothesis     R1

c.

Question

a.The weights, \(X\) grams, of tomatoes may be assumed to be normally distributed with mean \(\mu \) grams and standard deviation \(\sigma \) grams. Barry weighs \(21\) tomatoes selected at random and calculates the following statistics.\(\sum {x = 1071} \) ; \(\sum {{x^2} = 54705} \)

  (i)     Determine unbiased estimates of \(\mu \) and \({\sigma ^2}\) .

  (ii)     Determine a \(95\%\) confidence interval for \(\mu \) .[8]

b.The random variable \(Y\) has variance \({\sigma ^2}\) , where \({\sigma ^2} > 0\) . A random sample of \(n\) observations of \(Y\) is taken and \(S_{n – 1}^2\) denotes the unbiased estimator for \({\sigma ^2}\) .

By considering the expression

\({\rm{Var}}({S_{n – 1}}) = {\rm{E}}(S_{n – 1}^2) – {\left\{ {E\left. {({S_{n – 1}})} \right\}} \right.^2}\) ,

show that \(S_{n – 1}^{}\) is not an unbiased estimator for \(\sigma \) .[5]

 
▶️Answer/Explanation

Markscheme

(i)     \(\overline x  = \frac{{1071}}{{21}} = 51\)     A1

\(S_{n – 1}^2 = \frac{{54705}}{{20}} – \frac{{{{1071}^2}}}{{20 \times 21}} = 4.2\)     M1A1

(ii)     degrees of freedom \( = 20\) ; \(t\)-value \( = 2.086\)     (A1)(A1)

\(95\%\) confidence limits are

\(51 \pm 2.086\sqrt {\frac{{4.2}}{{21}}} \)     (M1)(A1)

leading to \(\left[ {50.1,51.9} \right]\)     A1

[8 marks]

a.

\({\rm{Var}}({S_{n – 1}}) > 0\)     A1

\(E(S_{n – 1}^2) = {\sigma ^2}\)     (A1)

substituting in the given equation,

\({\sigma ^2} – E(S_{n – 1}^{}) > 0\)     M1

it follows that

\(E(S_{n – 1}^{}) < \sigma \)     A1

this shows that \({S_{n – 1}}\) is not an unbiased estimator for \(\sigma \) since that would require = instead of \( < \)     R1

[5 marks]

b.

Question

The weights of apples, in grams, produced on a farm may be assumed to be normally distributed with mean \(\mu \) and variance \({\sigma ^2}\) .

a.The farm manager selects a random sample of \(10\) apples and weighs them with the following results, given in grams.\[82, 98, 102, 96, 111, 95, 90, 89, 99, 101\]

  (i)     Determine unbiased estimates for \(\mu \) and \({\sigma ^2}\) .

  (ii)     Determine a \(95\%\) confidence interval for \(\mu \) .[5]

b.The farm manager claims that the mean weight of apples is \(100\) grams but the buyer from the local supermarket claims that the mean is less than this. To test these claims, they select a random sample of \(100\) apples and weigh them. Their results are summarized as follows, where \(x\) is the weight of an apple in grams.\[\sum {x = 9831;\sum {{x^2} = 972578} } \]

  (i)     State suitable hypotheses for testing these claims.

  (ii)     Determine the \(p\)-value for this test.

  (iii)     At the \(1\%\) significance level, state which claim you accept and justify your answer.[5]

 
▶️Answer/Explanation

Markscheme

(i)     from the GDC,

unbiased estimate for \(\mu  = 96.3\)     A1

unbiased estimate for \({\sigma ^2} = 8.028{ \ldots ^2} = 64.5\)     (M1)A1

 

(ii)     \(95\%\) confidence interval is [\(90.6\), \(102\)]     A1A1

Note: Accept \(102.0\) as the upper limit.

 

[5 marks]

a.

(i)     \({H_0}:\mu  = 100;{H_1}:\mu  < 100\)     A1

(ii)     \(\overline x  = 98.31,{S_{n – 1}} = 7.8446 \ldots \)     (A1)

\(p\)-value \( = 0.0168\)     A1

 

(iii)     the farm manager’s claim is accepted because \(0.0168 > 0.01\)     A1R1

 

[5 marks]

b.

Question

The random variable \(X\) has the binomial distribution \({\text{B}}(n,{\text{ }}p)\), where \(n > 1\).

Show that

(a)     \(\frac{X}{n}\) is an unbiased estimator for \(p\);

(b)     \({\left( {\frac{X}{n}} \right)^2}\) is not an unbiased estimator for \({p^2}\);

(c)     \(\frac{{X(X – 1)}}{{n(n – 1)}}\) is an unbiased estimator for \({p^2}\).

▶️Answer/Explanation

Markscheme

(a)     \({\text{E}}\left( {\frac{X}{n}} \right) = \frac{1}{n}{\text{E}}(X)\)     M1

\( = \frac{1}{n} \times np = p\)     AG

therefore unbiased     AG

[2 marks]

 

(b)     \({\text{E}}\left[ {{{\left( {\frac{X}{n}} \right)}^2}} \right] = \frac{1}{{{n^2}}}\left( {{\text{Var}}(X) + {{[{\text{E}}(X)]}^2}} \right)\)     M1A1

\( = \frac{1}{{{n^2}}}\left( {np(1 – p) + {n^2}{p^2}} \right)\)     A1

\( \ne {p^2}\)     A1

therefore not unbiased     AG

[4 marks]

 

(c)     \({\text{E}}\left[ {\left( {\frac{{X(X – 1)}}{{n(n – 1)}}} \right)} \right] = \frac{{{\text{E}}({X^2}) – {\text{E}}(X)}}{{n(n – 1)}}\)     M1

\( = \frac{{np(1 – p) + {n^2}{p^2} – np}}{{n(n – 1)}}\)     A1

\( = \frac{{n{p^2}(n – 1)}}{{n(n – 1)}}\)     A1

\( = {p^2}\)

therefore unbiased     AG

[3 marks]

Scroll to Top