IBDP Maths AI: Topic: SL 2.1: Different forms of the equation of a straight line: IB style Questions SL Paper 1

Question

 Three towns, A, B and C are represented as coordinates on a map, where the x and y axes
represent the distances east and north of an origin, respectively, measured in kilometres.
Town A is located at (−6, −1) and town B is located at (8 , 6). A road runs along the
perpendicular bisector of [AB]. This information is shown in the following diagram.

(a) Find the equation of the line that the road follows.
Town C is due north of town A and the road passes through town C.
(b) Find the y-coordinate of town C.

Answer/Explanation

Ans:

(a) midpoint (1, 2.5)
\(m_{AB}=\frac{6-(-1)}{8-(-6)} = \frac{1}{2}\)
\(m_{\perp} = -2\)
y – 2.5 = -2 (x – 1)   OR  \(y=-2x + \frac{9}{2}\)   OR   4x + 2y – 9 = 0
(b) substituting x = -6 into equation from part (a)
\(y = -2(-6) + \frac{9}{2}\)
y = 16.5

Question

P (4, 1) and Q (0, –5) are points on the coordinate plane.

Determine the

(i) coordinates of M, the midpoint of P and Q.

(ii) gradient of the line drawn through P and Q.

(iii) gradient of the line drawn through M, perpendicular to PQ.[4]

a.

The perpendicular line drawn through M meets the y-axis at R (0, k).

Find k.[2]

b.
Answer/Explanation

Markscheme

(i) (2, – 2) parentheses not required.     (A1)

(ii) gradient of PQ \( = \left( {\frac{{ – 5 – 1}}{{0 – 4}}} \right) = \frac{6}{4} = \frac{3}{2}(1.5)\)     (M1)(A1)

(M1) for gradient formula with correct substitution

Award (A1) for \(y = \frac{3}{2}x – 5\) with no other working

(iii) gradient of perpendicular is \( – \frac{2}{3}\)     (A1)(ft)     (C4)[4 marks]

a.

\(\left( {\frac{{k + 2}}{{0 – 2}}} \right) =  – \frac{2}{3}\), \(k =  – \frac{2}{3}\) or \(y =  – \frac{2}{3}x + c\), \(c =  – \frac{2}{3}\therefore k =  – \frac{2}{3}\)     (M1)(A1)(ft)

Allow (\(0, – \frac{2}{3}\))

(M1) is for equating gradients or substituting gradient into \(y = mx + c\)     (C2)[2 marks]

b.

Question

A store sells bread and milk. On Tuesday, 8 loaves of bread and 5 litres of milk were sold for $21.40. On Thursday, 6 loaves of bread and 9 litres of milk were sold for $23.40.

If \(b =\) the price of a loaf of bread and \(m =\) the price of one litre of milk, Tuesday’s sales can be written as \(8b + 5m = 21.40\).

Using simplest terms, write an equation in b and m for Thursday’s sales.[2]

a.

Find b and m.[2]

b.

Draw a sketch, in the space provided, to show how the prices can be found graphically.

[2]

c.
Answer/Explanation

Markscheme

Thursday’s sales, \(6b + 9m = 23.40\)     (A1)

\(2b + 3m = 7.80\)     (A1)     (C2)[2 marks]

a.

\(m = 1.40\)     (accept 1.4)     (A1)(ft)

\(b = 1.80\)     (accept 1.8)     (A1)(ft)

Award (A1)(d) for a reasonable attempt to solve by hand and answer incorrect.     (C2)[2 marks]

b.

     (A1)(A1)(ft)

(A1) each for two reasonable straight lines. The intersection point must be approximately correct to earn both marks, otherwise penalise at least one line.

Note: The follow through mark is for candidate’s line from (a).     (C2)[2 marks]

c.

Question

The mid-point, M, of the line joining A(s , 8) to B(−2, t) has coordinates M(2, 3).

Calculate the values of s and t.[2]

a.

Find the equation of the straight line perpendicular to AB, passing through the point M.[4]

b.
Answer/Explanation

Markscheme

\(s = 6\)     (A1)

\(t = – 2\)     (A1)     (C2)[2 marks]

a.

\({\text{gradient of AB}} = \frac{{ – 2 – 8}}{{ – 2 – 6}} = \frac{{ – 10}}{{ – 8}} = \frac{5}{4}\)     (A1)(ft)

(A1) for gradient of AM or BM \( = \frac{5}{4}\)

\({\text{Perpendicular gradient}} = – \frac{4}{5}\)     (A1)(ft)

Equation of perpendicular bisector is

\(y = – \frac{4}{5}x + c\)

\(3 = – \frac{4}{5}(2) + c\)     (M1)

\(c = 4.6\)

\(y = -0.8x + 4.6\)

or \(5y = -4x + 23\)     (A1)(ft)     (C4)[4 marks]

b.

Question

Write down the gradient of the line \(y = 3x + 4\).[1]

a.

Find the gradient of the line which is perpendicular to the line \(y = 3x + 4\).[1]

b.

Find the equation of the line which is perpendicular to \(y = 3x + 4\) and which passes through the point \((6{\text{, }}7)\).[2]

c.

Find the coordinates of the point of intersection of these two lines.[2]

d.
Answer/Explanation

Markscheme

\(3\)     (A1)     (C1)[1 mark]

a.

\( – 1/3\)     (ft) from (a)     (A1)(ft)     (C1)[1 mark]

b.

Substituting \((6{\text{, }}7)\) in \(y ={\text{their }}mx + c\) or equivalent to find \(c\).     (M1)

\(y = \frac{{ – 1}}{3}x + 9\) or equivalent     (A1)(ft)      (C2)[2 marks]

c.

\((1.5{\text{, }}8.5)\)      (A1)(A1)(ft)     (C2)

Note: Award (A1) for \(1.5\), (A1) for \(8.5\). (ft) from (c), brackets not required.[2 marks]

d.
Scroll to Top