Home / IBDP Maths AI: Topic: SL 2.2: Concept of a function, domain, range and graph: IB style Questions SL Paper 1

IBDP Maths AI: Topic: SL 2.2: Concept of a function, domain, range and graph: IB style Questions SL Paper 1

Question 7. [Maximum mark: 5]

A function is defined by \(f (x) = 2 \frac{12}{x+5}\) for −7 ≤ x ≤ 7, x ≠ −5.

a. Find the range of f . [3]

b. Find the value of f −1 [2]

Answer/Explanation

(a) (f(-7)=) 8 and (f(-7)=)1 range is f(x) ≤ 1, f (x) ≥ 8

(b) EITHER sketch of f and y = 0 or sketch of  f−1 and \(x = 0 \) OR
finding the correct expression of f−1 (x) =\(\frac{-2-5x}{x-2}\) OR

\(f^{-1}(0)=\frac{-2-5(0)}{x-2}\) OR

\(f (x) = 0\)  THEN f−1 (0) =1

Question

Consider the numbers \(2\), \(\sqrt 3 \), \( – \frac{2}{3}\) and the sets \(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\) and \(\mathbb{R}\).

Complete the table below by placing a tick in the appropriate box if the number is an element of the set, and a cross if it is not.[3]

a.

A function \(f\) is given by \(f(x) = 2{x^2} – 3x{\text{, }}x \in \{ – 2{\text{, }}2{\text{, }}3\} \).

Write down the range of function \(f\).[1]

b.
Answer/Explanation

Markscheme

     (A1)(A1)(A1)     (C3)

Note: Accept any symbol for ticks. Do not penalise if the other boxes are left blank.[3 marks]

a.

\({\text{Range}} = \{ 2{\text{, }}9{\text{, }}14\} \)     (A1)(ft)     (C1)

Note: Brackets not required.[1 mark]

b.

Question

Factorise the expression \({x^2} – 3x – 10\).[2]

a.

A function is defined as \(f(x) = 1 + {x^3}\) for \(x \in \mathbb{Z}{\text{, }} {- 3} \leqslant x \leqslant 3\).

(i)     List the elements of the domain of \(f(x)\).

(ii)    Write down the range of \(f(x)\).[4]

b.
Answer/Explanation

Markscheme

\((x – 5)(x + 2)\)     (A1)(A1)     (C2)

Note: Award (A1) for \((x + 5)(x – 2)\), (A0) otherwise. If equation is equated to zero and solved by factorizing award (A1) for both correct factors, followed by (A0).[2 marks]

a.

(i)     \( – 3\), \( – 2\), \( – 1\), \(0\), \(1\), \(2\), \(3\)     (A1)(A1)     (C2)


Note:
Award (A2) for all correct answers seen and no others. Award (A1) for 3 correct answers seen.

(ii)    \( – 26\), \( – 7\), 0,1, 2, 9, 28     (A1)(A1)     (C2)


Note:
Award (A2) for all correct answers seen and no others. Award (A1) for 3 correct answers seen. If domain and range are interchanged award (A0) for (b)(i) and (A1)(ft)(A1)(ft) for (b)(ii).
[4 marks]

b.

Question

The graph of a quadratic function \(y = f (x)\) is given below.

Write down the equation of the axis of symmetry.[2]

a.

Write down the coordinates of the minimum point.[2]

b.

Write down the range of \(f (x)\).[2]

c.
Answer/Explanation

Markscheme

x = 3     (A1)(A1)     (C2)

Notes: Award (A1) for “ x = ” (A1) for 3.

The mark for x = is not awarded unless a constant is seen on the other side of the equation.[2 marks]

a.

(3, −14)  (Accept x = 3, y = −14)     (A1)(ft)(A1)     (C2)Note: Award (A1)(A0) for missing coordinate brackets.[2 marks]

b.

y ≥ −14     (A1)(A1)(ft)     (C2)

Notes: Award (A1) for y ≥ , (A1)(ft) for –14.

Accept alternative notation for intervals.[2 marks]

c.

Question

Given the function \(f (x) = 2 \times 3^x\) for −2 \( \leqslant \) x \( \leqslant \) 5,

find the range of \(f\).[4]

a.

find the value of \(x\) given that \(f (x) =162\).[2]

b.
Answer/Explanation

Markscheme

\(f (-2) = 2 \times 3^{-2}\)     (M1)

\(= \frac{{2}}{{9}}(0.222)\)     (A1)

\(f (5) = 2 \times 3^5\)

\(= 486\)     (A1)

\({\text{Range }}\frac{2}{9} \leqslant f(x) \leqslant 486\)   OR   \(\left[ {\frac{2}{9},{\text{ }}486} \right]\)     (A1)     (C4)

Note: Award (M1) for correct substitution of –2 or 5 into \(f (x)\), (A1)(A1) for each correct end point.[4 marks]

a.

\(2 \times 3^x = 162\)     (M1)

\(x = 4\)     (A1)     (C2)[2 marks]

b.
Scroll to Top