Question
The diagram shows a toy crane.
Given:
- \( AB = 25 \) cm
- \( AC = 15 \) cm
- \( \angle BAC = 22^\circ \)
(a) Calculate \( BC \).
(b) Given that \( \angle ABC \) is acute, calculate \( \angle ABC \).
▶️ Answer/Explanation
Detailed Solution
(a) Finding \( BC \) using the Cosine Rule:
\[ BC^2 = 15^2 + 25^2 – 2 \cdot 15 \cdot 25 \cdot \cos(22^\circ) \]
\[ BC = \sqrt{15^2 + 25^2 – 2 \cdot 15 \cdot 25 \cdot \cos(22^\circ)} \]
\[ BC = 12.4 \text{ cm} \, (12.4343\ldots) \]
(b) Finding \( \angle ABC \) using the Sine Rule or Cosine Rule:
Using the Sine Rule:
\[ \frac{12.4343\ldots}{\sin(22^\circ)} = \frac{15}{\sin(\angle ABC)} \]
Or using the Cosine Rule:
\[ \cos(\angle ABC) = \frac{25^2 + 12.4343\ldots^2 – 15^2}{2 \cdot 25 \cdot 12.4343\ldots} \]
Solving gives:
\[ \angle ABC = 26.9^\circ \, (26.8658\ldots^\circ) \]
…………………………..Markscheme…………………………..
(a)
- Correct calculation of \( BC = 12.4 \) cm (or \( 12.4343… \)).
(b)
- Correct calculation of \( \angle ABC = 26.9^\circ \) (or \( 26.8658…^\circ \)).