Home / IB Mathematics SL 3.4 length of an arc area of a sector AI HL Paper 2- Exam Style Questions

IB Mathematics SL 3.4 length of an arc area of a sector AI HL Paper 2- Exam Style Questions- New Syllabus

Question

A sector of a circle, center O and radius 4.5m, is shown in the following diagram.

Circle sector diagram

(a)
(i) Find the angle AÔB.
(ii) Find the area of the shaded segment.

A square field with side 8m has a goat tied to a post in the center by a rope such that the goat can reach all parts of the field up to 4.5m from the post.

Square field diagram

(b) Find the area of the field that can be reached by the goat.

Let V be the volume of grass eaten by the goat, in cubic metres, and t be the length of time, in hours, that the goat has been in the field. The goat eats grass at the rate of \( \frac{dV}{dt} = 0.3 t e^{-t} \).

(c) Find the value of t at which the goat is eating grass at the greatest rate.

The goat is tied in the field for 8 hours.

(d) Find the total volume of grass eaten by the goat during this time.

▶️ Answer/Explanation
Markscheme

(a)(i)
    The diagram shows a right triangle with adjacent side = 4m and hypotenuse = 4.5m
    Using cosine:
    \( \cos(\theta) = \frac{4}{4.5} = \frac{8}{9} \)
    \( \theta = \arccos\left(\frac{8}{9}\right) \approx 27.266…° \)
    This is half of angle AÔB, so:
    \( \angle AÔB = 2 \times 27.266…° \approx 54.532…° \)
    \( \approx 54.5° \) or 0.952 radians (M1)(A1)(A1)
Result:
54.5° (or 0.952 radians)

(a)(ii)
    Sector area:
    \( \text{Area} = \frac{1}{2} r^2 \theta = \frac{1}{2} \times 4.5^2 \times 0.951764… \)
    \( = \frac{1}{2} \times 20.25 \times 0.951764… \approx 9.63661 \, \text{m}^2 \) (M1)(A1)
    Triangle area:
    \( \text{Area} = \frac{1}{2} \times 4.5^2 \times \sin(54.532…°) \)
    \( = \frac{1}{2} \times 20.25 \times 0.814379… \approx 8.24621 \, \text{m}^2 \) (M1)(A1)
    Segment area:
    \( 9.63661 – 8.24621 = 1.39040 \, \text{m}^2 \)
    \( \approx 1.39 \, \text{m}^2 \) (A1)
Result:
1.39 \( \text{m}^2 \)

(b)
    Method 1:

Circle area \( \pi \times 4.5^2 = 63.617… \, \text{m}^2 \) (A1)
    Four segment areas: \( 4 \times 1.39040 = 5.56160 \, \text{m}^2 \) (A1)
    Reachable area: \( 63.617… – 5.56160 \approx 58.055… \, \text{m}^2 \) (M1)(A1)
    \( \approx 58.1 \, \text{m}^2 \)
    Method 2: 4 triangles + 4 sectors = \( 58.055… \, \text{m}^2 \) (A1)(A1)(M1)(A1)
Result:
58.1 \( \text{m}^2 \)

(c)
    Rate of grass consumption: \( \frac{dV}{dt} = 0.3 t e^{-t} \)
    Differentiate:
    \( \frac{d}{dt} (0.3 t e^{-t}) = 0.3 \left[ e^{-t} \cdot 1 + t \cdot (-e^{-t}) \right] \)
    \( = 0.3 e^{-t} (1 – t) \)
    Set to zero: \( 0.3 e^{-t} (1 – t) = 0 \)
    \( 1 – t = 0 \)
    \( t = 1 \)
    Second derivative: \( \frac{d}{dt} \left[ 0.3 e^{-t} (1 – t) \right] = 0.3 e^{-t} (t – 2) \)
    At \( t = 1 \): \( 0.3 e^{-1} (1 – 2) < 0 \) (M1)
    \( t = 1 \) hour (A1)
Result:
\( t = 1 \, \text{hour} \)

(d)
    Total volume \( V = \int_0^8 0.3 t e^{-t} \, dt \) (M1)
    Integration by parts: \( u = t \), \( dv = e^{-t} \, dt \)
    \( du = dt \), \( v = -e^{-t} \)
    \( \int t e^{-t} \, dt = -t e^{-t} – e^{-t} + C \)
    Evaluate from 0 to 8:
    \( \left[ -t e^{-t} – e^{-t} \right]_0^8 = (-8e^{-8} – e^{-8}) – (-0 – 1) \)
    \( = -9e^{-8} + 1 \) (A1)
    Multiply by 0.3: \( V = 0.3 (1 – 9e^{-8}) \approx 0.3 (1 – 0.003019…) \)
    \( \approx 0.3 \times 0.99698… \approx 0.299094… \, \text{m}^3 \) (A1)
    \( \approx 0.299 \, \text{m}^3 \)
Result:
0.299 \( \text{m}^3 \)

Scroll to Top