IB Mathematics SL 3.5 Equations of perpendicular bisectors AI SL Paper 2 - Exam Style Questions - New Syllabus
Question
The Voronoi diagram below shows four Hypermarkets represented by points with coordinates \(A(0,0)\), \(B(6,0)\), \(C(0,6)\) and \(D(2,2)\). The vertices \(X, Y, Z\) are also shown. All distances are measured in kilometres.

(a) Find the midpoint of \([BD]\). [2]
(b) Find the equation of \((XZ)\). [4]
The equation of \((XY)\) is \(y=2-x\) and the equation of \((YZ)\) is \(y=0.5x+3.5\).
(c) Find the coordinates of \(X\). [3]
The coordinates of \(Y\) are \((-1,3)\) and the coordinates of \(Z\) are \((7,7)\).
(d) Determine the exact length of \([YZ]\). [2]
(e) Given that the exact length of \([XY]\) is \(\sqrt{32}\), find the size of \( \widehat{XYZ} \) in degrees. [4]
(f) Hence find the area of triangle \(XYZ\). [2]
A town planner believes that the larger the area of the Voronoi cell \(XYZ\), the more people will shop at supermarket \(D\).
(g) State one criticism of this interpretation. [1]
▶️ Answer / Explanation
Solution
(a) Midpoint of \(B(6,0)\) and \(D(2,2)\):
\[ M_{BD}=\left(\frac{6+2}{2},\,\frac{0+2}{2}\right)=(4,1). \] [2]
(b) Line \((XZ)\) is the perpendicular bisector of \([BD]\):
Slope of \(BD\): \(m_{BD}=\dfrac{2-0}{2-6}=\dfrac{2}{-4}=-\frac{1}{2}\).
Therefore slope of \((XZ)\): \(m_{\perp}=2\). Passing through \((4,1)\):
\(y-1=2(x-4)\ \Rightarrow\ \boxed{y=2x-7}.\) [4]
Therefore slope of \((XZ)\): \(m_{\perp}=2\). Passing through \((4,1)\):
\(y-1=2(x-4)\ \Rightarrow\ \boxed{y=2x-7}.\) [4]
(c) \(X\) is the intersection of \((XY)\) and \((XZ)\):
Solve \(\begin{cases}y=2-x\\ y=2x-7\end{cases}\Rightarrow 2-x=2x-7\Rightarrow 3x=9\Rightarrow x=3\).
Then \(y=2-3=-1\). Hence \(\boxed{X(3,-1)}\). [3]
Then \(y=2-3=-1\). Hence \(\boxed{X(3,-1)}\). [3]
(d) Exact length of \([YZ]\) with \(Y(-1,3)\), \(Z(7,7)\):
\[ YZ=\sqrt{(7-(-1))^2+(7-3)^2}=\sqrt{8^2+4^2}=\sqrt{80}= \boxed{4\sqrt{5}}. \] [2]
(e) Given \(|XY|=\sqrt{32}=4\sqrt{2}\), and from (c) & (d), \(|XZ|=\sqrt{(7-3)^2+(7-(-1))^2}=\sqrt{80}=4\sqrt{5}\).
Use the cosine rule at angle \( \angle XYZ \) (sides adjacent to \(Y\) are \(YX\) and \(YZ\), opposite is \(XZ\)):
\[ \cos(\angle XYZ)=\frac{XY^2+YZ^2-XZ^2}{2\cdot XY\cdot YZ} =\frac{32+80-80}{2\cdot (4\sqrt2)\cdot (4\sqrt5)} =\frac{32}{32\sqrt{10}} =\frac{\sqrt{10}}{10}. \] Hence \(\angle XYZ=\cos^{-1}\!\left(\frac{\sqrt{10}}{10}\right)\approx \boxed{71.6^\circ}\) (to 1 d.p.). [4]
\[ \cos(\angle XYZ)=\frac{XY^2+YZ^2-XZ^2}{2\cdot XY\cdot YZ} =\frac{32+80-80}{2\cdot (4\sqrt2)\cdot (4\sqrt5)} =\frac{32}{32\sqrt{10}} =\frac{\sqrt{10}}{10}. \] Hence \(\angle XYZ=\cos^{-1}\!\left(\frac{\sqrt{10}}{10}\right)\approx \boxed{71.6^\circ}\) (to 1 d.p.). [4]
(f) Area of \(\triangle XYZ\):
\[ \text{Area}=\tfrac12\,(XY)(YZ)\sin(\angle XYZ) =\tfrac12\,(4\sqrt2)(4\sqrt5)\,\sqrt{1-\left(\tfrac{\sqrt{10}}{10}\right)^2} =\tfrac12\cdot 16\sqrt{10}\cdot \sqrt{\tfrac{9}{10}} =\tfrac12\cdot 16\cdot 3 =\boxed{24\ \text{km}^2}. \] [2]
(g) Example criticism:
A larger Voronoi area does not account for population density, transport links, or store type/amenities; proximity alone may not determine where people shop. [1]
Total: 18 marks