IB Mathematics SL 4.5 Concepts of trial, outcome, equally likely outcomes AI SL Paper 2 - Exam Style Questions - New Syllabus
Question

(a) Find the
(ii) minimum value of \(h\). [2]
(ii) Calculate the angle, in degrees, that the blade \([BC]\) turns through in one second. [3]
(ii) Find the period of the function. [2]
(ii) Find the time, in seconds, that point \(C\) is above a height of \(100\) m, during each complete rotation. [5]

(ii) The wind speed increases. The blades rotate at twice the speed, but still at a constant rate. At any given instant, find the probability that Riya can see point \(C\) from her window. Justify your answer. [5]
▶️ Answer / Explanation
(a)
Tower top at \(90\) m; blade length \(40\) m.
(i) \(h_{\max}=90+40=\boxed{130\text{ m}}\). (ii) \(h_{\min}=90-40=\boxed{50\text{ m}}\).
(b)
(i) \(12\) rev/min \(\Rightarrow\) period \(=\dfrac{60}{12}=\boxed{5\text{ s}}\).
(ii) One full rotation \(360^\circ\) in \(5\) s \(\Rightarrow\) angle per second \(=\dfrac{360^\circ}{5}=\boxed{72^\circ\text{/s}}\).
(c)
From \(h(t)=90-40\cos(72t^\circ)\): amplitude \(=\boxed{40}\). Period \(=\dfrac{360^\circ}{72^\circ\!/\text{s}}=\boxed{5\text{ s}}\).
(d)
Over \(0\le t\le 5\): minima at \(t=0,5\) with \(h=50\); maximum at \(t=2.5\) with \(h=130\). Sketch cosine shape; label \((0,50)\), \((2.5,130)\), \((5,50)\); correct concavity near minima.
(e)
(i) \(h(2)=90-40\cos(144^\circ)\). Since \(\cos(144^\circ)=\cos(180^\circ-36^\circ)=-\cos36^\circ\approx-0.809016\),
\(h(2)\approx 90-40(-0.809016)=90+32.3606=\boxed{122\text{ m (to 3 s.f.)}}\).
Let \(\theta=72t^\circ\). Threshold angles: \(\theta_1=\arccos(-\tfrac14)\approx 104.4775^\circ\), \(\theta_2=360^\circ-104.4775^\circ=255.5225^\circ\).
Time above \(100\) m each rotation: \[ \Delta t=\frac{\theta_2-\theta_1}{360^\circ}\times 5 =\frac{151.045^\circ}{360^\circ}\times 5 \approx \boxed{2.10\text{ s}}. \] (Crossing times: \(t_1=\tfrac{104.4775}{72}\approx 1.4511\) s, \(t_2=\tfrac{255.5225}{72}\approx 3.5489\) s.)
(f)
(i) In one period \(T=5\) s, visible when \(h\le 100\). From (e)(ii), time above \(100\) m is \(2.09784\) s, so time visible \(=5-2.09784=2.90216\) s.
Probability (uniform in time) \(=\dfrac{2.90216}{5}=\boxed{0.580}\) (to 3 d.p.).
(ii) Doubling the speed halves both \(T\) and the above-threshold duration; the proportion of time visible is unchanged. Probability remains \(\boxed{0.580}\).