Home / IB Mathematics AHL 4.16 Confidence intervals for the mean of a normal population.AI HL Paper 1- Exam Style Questions

IB Mathematics AHL 4.16 Confidence intervals for the mean of a normal population.AI HL Paper 1- Exam Style Questions

IB Mathematics AHL 4.16 Confidence intervals for the mean of a normal population. AI HL Paper 1- Exam Style Questions- New Syllabus

Question

A manufacturer of chocolates produces them in individual packets, claiming to have an average of 85 chocolates per packet. Talha bought 30 of these packets in order to check the manufacturer’s claim. Given that the number of individual chocolates is \( x \), Talha found that, from his 30 packets, \( \sum x = 2506 \) and \( \sum x^2 = 209,738 \).

(a) Find an unbiased estimate for the mean number (\( \mu \)) of chocolates per packet [1]

(b) Use the formula \( S^2_{n-1} = \frac{\sum x^2 – \frac{(\sum x)^2}{n}}{n-1} \) to determine an unbiased estimate for the variance of the number of chocolates per packet [2]

(c) Find a 95% confidence interval for \( \mu \). You may assume that all conditions for a confidence interval have been met [2]

(d) Suggest, with justification, a valid conclusion that Talha could make [1]

▶️ Answer/Explanation
Markscheme

(a)
83.5

Formula: \( \bar{x} = \frac{\sum x}{n} \)

Given: \( \sum x = 2506 \), \( n = 30 \)

Calculate: \( \bar{x} = \frac{2506}{30} \approx 83.5333333333 \)

Round to one decimal place: 83.5

Result: 83.5 [1]

(b)
13.9

Formula: \( S^2_{n-1} = \frac{\sum x^2 – \frac{(\sum x)^2}{n}}{n-1} \)

Given: \( \sum x = 2506 \), \( \sum x^2 = 209,738 \), \( n = 30 \)

Calculate: \( (\sum x)^2 = 2506^2 = 6,280,036 \)
\( \frac{(\sum x)^2}{n} = \frac{6,280,036}{30} \approx 209,334.5333333333 \)
\( \sum x^2 – \frac{(\sum x)^2}{n} = 209,738 – 209,334.5333333333 \approx 403.4666666667 \)
\( S^2_{n-1} = \frac{403.4666666667}{30-1} = \frac{403.4666666667}{29} \approx 13.9126436782 \)

Round to one decimal place: 13.9

Result: 13.9 [2]

(c)
(82.1, 84.9)

Formula: \( \bar{x} \pm t \cdot \frac{s}{\sqrt{n}} \)

Given: \( \bar{x} = 83.5333333333 \), \( S^2_{n-1} \approx 13.9126436782 \), \( n = 30 \), \( t \approx 2.045 \) (for 95%, \( df = 29 \))

Calculate standard deviation: \( s = \sqrt{13.9126436782} \approx 3.7297766971 \)
Standard error: \( \frac{s}{\sqrt{n}} = \frac{3.7297766971}{\sqrt{30}} \approx 0.6808278147 \)
Margin of error: \( 2.045 \times 0.6808278147 \approx 1.392292881 \)
Interval: \( 83.5333333333 – 1.392292881 \approx 82.1410404523 \)
\( 83.5333333333 + 1.392292881 \approx 84.9256262143 \)

Round to one decimal place: (82.1, 84.9)

Result: (82.1, 84.9) [2]

(d)
The manufacturer’s claim is incorrect because 85 is outside the 95% confidence interval (82.1, 84.9)

Manufacturer’s claim: \( \mu = 85 \)

Compare: 95% confidence interval is (82.1, 84.9)
\( 85 > 84.9 \), so 85 is not within the interval

Evidence suggests the true mean differs from 85

Result: The manufacturer’s claim is likely incorrect [1]

Scroll to Top