IBDP Maths AHL 1.13 Modulus-argument in polar form AA HL Paper 1- Exam Style Questions- New Syllabus
Consider \(\phi = (a + bi)^3\), where \(a, b \in \mathbb{R}\).
(a) In terms of \(a\) and \(b\), find
(i) the real part of \(\phi \);
(ii) the imaginary part of \(\phi \).
(b) Hence, or otherwise, show that \((1 + \sqrt{3}\, i)^3 = -8\).
The roots of the equation \(z^3 = -8\) are \(u, v, w\), where \(u = 1 + \sqrt{3}\, i\) and \(v \in \mathbb{R}\).
(c) Write down \(v\) and \(w\), giving your answers in Cartesian form.
On an Argand diagram, \(u, v, w\) are represented by points \(U, V, W\) respectively.
(d) Find the area of triangle \(UVW\).
Each of the points \(U, V, W\) is rotated counter-clockwise about \(0\) through an angle of \(\frac{\pi}{4}\) to form three new points \(U’, V’, W’\), representing \(u’, v’, w’\).
(e) Find \(u’, v’, w’\), giving answers in the form \(r e^{i\theta}\), where \(-\pi < \theta \leq \pi\).
(f) Given \(u’, v’, w’\) are solutions of \(z^3 = c + di\), where \(c, d \in \mathbb{R}\), find \(c\) and \(d\).
It is given that \(u, v, w, u’, v’, w’\) are solutions of \(z^n = \alpha\) for some \(\alpha \in \mathbb{C}\), \(n \in \mathbb{N}\).
(g) Find the smallest positive \(n\).
▶️ Answer/Explanation
(a)
(i) Expand \(\phi = (a + bi)^3\):
\((a + bi)^2 = a^2 + 2abi – b^2\), so \((a + bi)^3 = (a^2 – b^2 + 2abi)(a + bi) = a^3 + a^2bi – ab^2 + a^2bi + 2a b^2 i – b^3 i^2 = a^3 – 3ab^2 + (3a^2 b – b^3)i\).
Real part: \(a^3 – 3ab^2\).
(ii) Imaginary part: \(3a^2 b – b^3\).
(b) Using (a), for \(a = 1\), \(b = \sqrt{3}\):
Real: \(1^3 – 3 \cdot 1 \cdot (\sqrt{3})^2 = 1 – 9 = -8\).
Imaginary: \(3 \cdot 1^2 \cdot \sqrt{3} – (\sqrt{3})^3 = 3\sqrt{3} – 3\sqrt{3} = 0\).
Thus, \(\phi = (1 + \sqrt{3}\, i)^3 = -8 + 0i = -8\).
(c) Solve \(z^3 = -8 = 8 e^{i\pi}\). Cube roots:
\(z = 2 e^{i(\pi + 2k\pi)/3}\), for \(k = 0, 1, 2\):
– \(k = 0\): \(2 e^{i\pi/3} = 2 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 1 + i\sqrt{3} = u\).
– \(k = 1\): \(2 e^{i\pi} = -2 = v\).
– \(k = 2\): \(2 e^{i5\pi/3} = 2 \left( \frac{1}{2} – i \frac{\sqrt{3}}{2} \right) = 1 – i\sqrt{3} = w\).
(d) Points: \(U(1, \sqrt{3})\), \(V(-2, 0)\), \(W(1, -\sqrt{3})\). Shoelace formula:
Area = \(\frac{1}{2} \left| 1 (0 – (-\sqrt{3})) + (-2) (-\sqrt{3} – \sqrt{3}) + 1 (\sqrt{3} – 0) \right| = \frac{1}{2} \cdot 6\sqrt{3} = 3\sqrt{3}\).
(e) Rotate by \(e^{i\pi/4}\):
– \(u = 2 e^{i\pi/3}\), \(u’ = 2 e^{i(\pi/3 + \pi/4)} = 2 e^{i7\pi/12}\).
– \(v = 2 e^{i\pi}\), \(v’ = 2 e^{i(\pi + \pi/4)} = 2 e^{i5\pi/4}\).
– \(w = 2 e^{i(-\pi/3)}\), \(w’ = 2 e^{i(-\pi/3 + \pi/4)} = 2 e^{i\pi/12}\).
(f) Compute \((u’)^3 = (2 e^{i7\pi/12})^3 = 8 e^{i7\pi/4} = 8 \left( \cos \frac{\pi}{4} – i \sin \frac{\pi}{4} \right) = 4\sqrt{2} – 4\sqrt{2}i\). Thus, \(c = 4\sqrt{2}\), \(d = -4\sqrt{2}\).
(g) Arguments: \(\frac{\pi}{3}, \pi, -\frac{\pi}{3}, \frac{7\pi}{12}, \frac{5\pi}{4}, \frac{\pi}{12}\). Common denominator (12): \(\frac{4\pi}{12}, \frac{12\pi}{12}, -\frac{4\pi}{12}, \frac{7\pi}{12}, \frac{15\pi}{12}, \frac{1\pi}{12}\). Smallest \(n\) for \(n \cdot \frac{\pi}{12} = 2k\pi\): \(n = 24\).
Markscheme
(a)
Expand \(\phi = (a + bi)^3\): \((a^3 – 3ab^2) + (3a^2 b – b^3)i \quad \mathbf{M1} \)
Real: \(a^3 – 3ab^2\), Imaginary: \(3a^2 b – b^3 \quad \mathbf{A1} \)
(b)
Substitute \(a = 1\), \(b = \sqrt{3}\): \(\phi = -8 \quad \mathbf{M1A1} \)
(c)
Roots: \(v = -2\), \(w = 1 – i\sqrt{3} \quad \mathbf{A1A1} \)
(d)
Shoelace: Area = \(3\sqrt{3} \quad \mathbf{M1A1} \)
(e)
Rotate: \(u’ = 2 e^{i7\pi/12}\), \(v’ = 2 e^{i5\pi/4}\), \(w’ = 2 e^{i\pi/12} \quad \mathbf{M1A1A1} \)
(f)
Compute \((u’)^3\): \(c = 4\sqrt{2}\), \(d = -4\sqrt{2} \quad \mathbf{M1A1} \)
(g)
Arguments differ by \(\frac{\pi}{12}\): \(n = 24 \quad \mathbf{M1A1} \)
[14 marks]
In the following Argand diagram, the points \( Z_1 \), \( O \) and \( Z_2 \) are the vertices of triangle \( Z_1OZ_2 \) described anticlockwise.
The point \( Z_1 \) represents the complex number \( z_1 = r_1 e^{i\alpha} \), where \( r_1 > 0 \). The point \( Z_2 \) represents the complex number \( z_2 = r_2 e^{i\theta} \), where \( r_2 > 0 \).
Angles \(\alpha\), \(\theta\) are measured anticlockwise from the positive direction of the real axis such that \( 0 \leq \alpha, \theta < 2\pi \) and \( 0 < \alpha – \theta < \pi \).
(a) Show that \( z_1 z_2^* = r_1 r_2 e^{i(\alpha – \theta)} \) where \( z_2^* \) is the complex conjugate of \( z_2 \).
(b) Given that \(\text{Re} (z_1 z_2^*) = 0\), show that \( Z_1OZ_2 \) is a right-angled triangle.
In parts (c), (d) and (e), consider the case where \( Z_1OZ_2 \) is an equilateral triangle.
(c) (i) Express \( z_1 \) in terms of \( z_2 \).
(ii) Hence show that \( z_1^2 + z_2^2 = z_1 z_2 \).
Let \( z_1 \) and \( z_2 \) be the distinct roots of the equation \( z^2 + az + b = 0 \) where \( z \in \mathbb{C} \) and \( a, b \in \mathbb{R} \).
(d) Use the result from part (c)(ii) to show that \( a^2 – 3b = 0 \).
Consider the equation \( z^2 + az + 12 = 0 \), where \( z \in \mathbb{C} \) and \( a \in \mathbb{R} \).
(e) Given that \( 0 < \alpha – \theta < \pi \), deduce that only one equilateral triangle \( Z_1OZ_2 \) can be formed from the point \( O \) and the roots of this equation.
▶️ Answer/Explanation
(a) \( z_2^* = r_2 e^{-i\theta} \), so \( z_1 z_2^* = r_1 e^{i\alpha} \cdot r_2 e^{-i\theta} = r_1 r_2 e^{i(\alpha – \theta)} \).
(b) \(\text{Re} (z_1 z_2^*) = r_1 r_2 \cos(\alpha – \theta) = 0\), so \(\alpha – \theta = \frac{\pi}{2}\) (since \( 0 < \alpha – \theta < \pi \)), making \(\angle Z_1OZ_2 = 90^\circ\).
(c)
(i) For equilateral \( Z_1OZ_2 \), \( z_1 = z_2 e^{i\pi/3} = z_2 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \).
(ii) \( z_1^2 + z_2^2 = z_2^2 \left( -\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) + z_2^2 = z_2^2 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = z_1 z_2 \).
(d) \( (z_1 + z_2)^2 – 2 z_1 z_2 = z_1 z_2 \), so \((-a)^2 = 3b \implies a^2 – 3b = 0\).
(e) For \( z^2 + az + 12 = 0 \), \( a^2 – 36 = 0 \implies a = \pm 6 \).
– \( a = -6 \): Roots \( z_1 = -3 + 3i \), \( z_2 = -3 – 3i \), angles \(\alpha – \theta = \frac{5\pi}{3} – \frac{\pi}{3} = \frac{4\pi}{3} > \pi\) (invalid).
– \( a = 6 \): Roots \( z_1 = 3 + 3i \), \( z_2 = 3 – 3i \), angles \(\frac{\pi}{4}, \frac{7\pi}{4}\), \(\alpha – \theta = \frac{7\pi}{12} – \frac{\pi}{4} = \frac{\pi}{3} < \pi\) (valid).
Only one pair satisfies \( 0 < \alpha – \theta < \pi \).
Markscheme
(a)
Conjugate and product \(\quad \mathbf{M1A1} \)
Show equality \(\quad \mathbf{A1} \)
(b)
Real part = 0 \(\quad \mathbf{M1} \)
Right angle \(\quad \mathbf{A1A1} \)
(c)
(i) \( z_1 = z_2 e^{i\pi/3} \quad \mathbf{M1A1} \)
(ii) Prove equality \(\quad \mathbf{M1A1} \)
(d)
Derive \( a^2 – 3b = 0 \quad \mathbf{M1A1} \)
(e)
Solve and check angles \(\quad \mathbf{M1} \)
One triangle \(\quad \mathbf{A1A1} \)
[14 marks]
Consider the complex numbers z1 = 1 + bi and z2 = (1 – b2) – 2bi, where b ∈ ℝ, b ≠ 0.
(a) Find an expression for z1z2 in terms of b.
(b) Hence, given that arg(z1z2) = \(\frac{\pi}{4}\), find the value of b.
▶️ Answer/Explanation
(a) \[ \begin{align*} z_1z_2 &= (1 + bi)\left((1 – b^2) – 2bi\right) \\ &= (1)(1 – b^2) + (1)(-2b)i + (bi)(1 – b^2) + (bi)(-2bi) \\ &= (1 – b^2) – 2bi + bi – b^3i – 2b^2i^2 \\ &= (1 – b^2 + 2b^2) + (-2b + b – b^3)i \\ &= (1 + b^2) + (-b – b^3)i \end{align*} \]
(b) Given arg(z1z2) = \(\frac{\pi}{4}\): \[ \tan\left(\frac{\pi}{4}\right) = \frac{\text{Im}(z_1z_2)}{\text{Re}(z_1z_2)} = \frac{-b – b^3}{1 + b^2} = 1 \] EITHER \[ \frac{-b(1 + b^2)}{1 + b^2} = 1 \implies -b = 1 \implies b = -1 \] OR \[ -b – b^3 = 1 + b^2 \implies b^3 + b^2 + b + 1 = 0 \implies (b + 1)(b^2 + 1) = 0 \] Since b ∈ ℝ, the only solution is b = -1. THEN The required value is \(\boxed{-1}\)
Consider \(w = 2\left( \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right)\).
a. i. Express \(w^2\) and \(w^3\) in modulus-argument form.
ii. Sketch on an Argand diagram the points represented by \(w^0\), \(w^1\), \(w^2\) and \(w^3\). These four points form the vertices of a quadrilateral, \(Q\).
b. Show that the area of the quadrilateral \(Q\) is \(\frac{21\sqrt{3}}{2}\).
c. Let \(z = 2\left( \cos\frac{\pi}{n} + i \sin\frac{\pi}{n} \right)\), \(n \in \mathbb{Z}^+\). The points represented on an Argand diagram by \(z^0, z^1, z^2, \ldots, z^n\) form the vertices of a polygon \(P_n\). Show that the area of the polygon \(P_n\) can be expressed in the form \(a(b^n – 1)\sin\frac{\pi}{n}\), where \(a, b \in \mathbb{R}\).
▶️ Answer/Explanation
a. i. Using De Moivre’s Theorem:
\[ w^2 = 2^2 \text{cis}\left(2 \times \frac{\pi}{3}\right) = 4\text{cis}\left(\frac{2\pi}{3}\right) \] \[ w^3 = 2^3 \text{cis}\left(3 \times \frac{\pi}{3}\right) = 8\text{cis}(\pi) \]Thus:
\[ \boxed{w^2 = 4\text{cis}\left(\frac{2\pi}{3}\right)} \quad \text{and} \quad \boxed{w^3 = 8\text{cis}(\pi)} \]a. ii. The points \(w^0 = 1\), \(w^1 = 2\text{cis}\left(\frac{\pi}{3}\right)\), \(w^2 = 4\text{cis}\left(\frac{2\pi}{3}\right)\), and \(w^3 = 8\text{cis}(\pi)\) form a quadrilateral on the Argand diagram:

The sketch shows these four points with their correct moduli and arguments.
b. The area of quadrilateral \(Q\) can be calculated using the formula for the area of triangles formed by consecutive points:
\[ \text{Area} = \frac{1}{2} \times 1 \times 2 \times \sin\frac{\pi}{3} + \frac{1}{2} \times 2 \times 4 \times \sin\frac{\pi}{3} + \frac{1}{2} \times 4 \times 8 \times \sin\frac{\pi}{3} \] \[ = \frac{\sqrt{3}}{2} + 2\sqrt{3} + 8\sqrt{3} = \frac{21\sqrt{3}}{2} \]Thus, the area is:
\[ \boxed{\frac{21\sqrt{3}}{2}} \]c. The area of polygon \(P_n\) is the sum of areas of triangles formed by consecutive points \(z^k\) and \(z^{k+1}\):
\[ \text{Area} = \sum_{k=0}^{n-1} \frac{1}{2} \times 2^k \times 2^{k+1} \times \sin\frac{\pi}{n} = \sin\frac{\pi}{n} \sum_{k=0}^{n-1} 2^{2k} \]The sum is a geometric series with first term 1 and common ratio 4:
\[ \sum_{k=0}^{n-1} 4^k = \frac{4^n – 1}{3} \]Thus, the area is:
\[ \boxed{\frac{1}{3}(4^n – 1)\sin\frac{\pi}{n}} \]