Home / IBDP Maths analysis and approaches Topic: SL 1.5: Laws of exponents with integer; laws of logarithms base 10 and e HL Paper 1

IBDP Maths analysis and approaches Topic: SL 1.5: Laws of exponents with integer; laws of logarithms base 10 and e HL Paper 1

Question

Solve $3 \times 9^x + 5 \times 3^x – 2 = 0$.

▶️Answer/Explanation

Solution: – 

$3 \times (3^x)^2 + 5 \times 3^x – 2 = 0$

Let t = $3^x$ , therefore

$3 \times (t)^2 + 5 \times t – 2 = 0$

$3 \times (t)^2 + 6 \times t- 1 \times t – 2 = 0$

  (3t – 1)(t+ 2) = 0, or 

$(3 \times 3^x – 1)(3^x + 2) = 0 $

$3^x = \frac{1}{3} \quad (\text{or} \; 3^x = -2)$

$x = -1$

Question

It is given that \(log_{10}a=\frac{1}{3}\), where \(a> 0\).

Find the value of

(a) \(log_{10}(\frac{1}{a})\);

(b) \(log_{1000}a\)

▶️Answer/Explanation

Solution 

Given that

\(log_{10}a\) = \(\frac{1}{3}\)

Applying the logarithm property 

\(log_{10}\frac{X}{Y}\) = \(log_{10}X\) – \(log_{10}Y\)

put X= 1, Y= a, we get 

(a) \(log_{10}\frac{1}{a}\)  = \(log_{10}1-log_{10}a\) 

Now, applying the property

\(log_{10}m^n{}\) = \(n log_{10}m{}\)

put m=a, n= -1, we get

  \(log_{10}a^{-1}=-log_{10}a\) 

 putting the value of  \(log_{10}a\) = \(\frac{1}{3}\)

we get  \(log_{10}\frac{1}{a}\)  =\(-\frac{1}{3}\)

(b) Applying the property \(log_{n}m\) = \(\frac{(log_{}m)}{(log_{}n)}\)

putting m= a, n= 1000 = 10^{3} and applying base 10, we get

\(\frac{log_{10}a}{log_{10}10^{3}}\) = \(\frac{log_{10}a}{3 log_{10}10^{}}\)

we know that \({log_{10}10^{}}\) = 1  and  putting the value of  \(log_{10}a\) = \(\frac{1}{3}\)  we get

          \(\frac{log_{10}a}{log_{10}10^{3}}\) = \(\frac{1}{3}\)\(\frac{(\frac{1}{3})}{1} \)

           = \( \frac{1}{9}\)

 

 

 

 

 

Question

Solve the equation \(2 – {\log _3}(x + 7) = {\log _{\tfrac{1}{3}}}2x\) .

▶️Answer/Explanation

Markscheme

\({\log _3}\left( {\frac{9}{{x + 7}}} \right) = {\log _3}\frac{1}{{2x}}\)     M1M1A1

Note: Award M1 for changing to single base, M1 for incorporating the 2 into a log and A1 for a correct equation with maximum one log expression each side.

\(x + 7 = 18x\)     M1

\(x = \frac{7}{{17}}\)     A1

[5 marks] 

Question

The first terms of an arithmetic sequence are \(\frac{1}{{{{\log }_2}x}},{\text{ }}\frac{1}{{{{\log }_8}x}},{\text{ }}\frac{1}{{{{\log }_{32}}x}},{\text{ }}\frac{1}{{{{\log }_{128}}x}},{\text{ }} \ldots \)

Find x if the sum of the first 20 terms of the sequence is equal to 100.

▶️Answer/Explanation

Markscheme

METHOD 1

\(d = \frac{1}{{{{\log }_8}x}} – \frac{1}{{{{\log }_2}x}}\)     (M1)

\( = \frac{{{{\log }_2}8}}{{{{\log }_2}x}} – \frac{1}{{{{\log }_2}x}}\)     (M1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\( = \frac{2}{{{{\log }_2}x}}\)     (A1)

\(\frac{{20}}{2}\left( {2 \times \frac{1}{{{{\log }_2}x}} + 19 \times \frac{2}{{{{\log }_2}x}}} \right)\)     M1

\( = \frac{{400}}{{{{\log }_2}x}}\)     (A1)

\(100 = \frac{{400}}{{{{\log }_2}x}}\)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

METHOD 2

\({20^{{\text{th}}}}{\text{ term}} = \frac{1}{{{{\log }_{{2^{39}}}}x}}\)     A1

\(100 = \frac{{20}}{2}\left( {\frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_{{2^{39}}}}x}}} \right)\)     M1

\(100 = \frac{{20}}{2}\left( {\frac{1}{{{{\log }_2}x}} + \frac{{{{\log }_2}{2^{39}}}}{{{{\log }_2}x}}} \right)\)     M1(A1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\(100 = \frac{{400}}{{{{\log }_2}x}}\)     (A1)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

METHOD 3

\(\frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_8}x}} + \frac{1}{{{{\log }_{32}}x}} + \frac{1}{{{{\log }_{128}}x}} +  \ldots \)

\(\frac{1}{{{{\log }_2}x}} + \frac{{{{\log }_2}8}}{{{{\log }_2}x}} + \frac{{{{\log }_2}32}}{{{{\log }_2}x}} + \frac{{{{\log }_2}128}}{{{{\log }_2}x}} +  \ldots \)     (M1)(A1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\( = \frac{1}{{{{\log }_2}x}}(1 + 3 + 5 +  \ldots )\)     A1

\( = \frac{1}{{{{\log }_2}x}}\left( {\frac{{20}}{2}(2 + 38)} \right)\)     (M1)(A1)

\(100 = \frac{{400}}{{{{\log }_2}x}}\)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

[6 marks]

Scroll to Top