IBDP Maths SL 2.11 Transformations of graphs AA HL Paper 1- Exam Style Questions- New Syllabus
The following diagram shows the graph of \( y = \arctan(2x+1) + \frac{\pi}{4} \) for \( x \in \mathbb{R} \) with asymptotes at \( y=-\frac{\pi}{4} \) and \( y=\frac{3\pi}{4} \).
(a) Describe a sequence of transformations that transforms the graph of \( y = \arctan x \) to the graph of \( y = \arctan(2x+1) + \frac{\pi}{4} \). [3]
(b) Show that \( \arctan p + \arctan q = \arctan\left(\frac{p+q}{1-pq}\right) \) where \( p, q > 0 \) and \( pq < 1 \). [4]
(c) Verify that \( \arctan(2x+1) = \arctan\left(\frac{x}{x+1}\right) + \frac{\pi}{4} \) for \( x \in \mathbb{R}, x > 0 \). [3]
(d) Using mathematical induction and the result from part (b), prove that: \[ \sum_{r=1}^{n} \arctan\left(\frac{1}{2r^2}\right) = \arctan\left(\frac{n}{n+1}\right) \text{ for } n \in \mathbb{Z}^+ \]
▶️ Answer/Explanation
(a) Transformations:
Solution:
1. Translation: Replace \( x \) with \( x+1 \) → \( y = \arctan(x+1) \) (shift left by 1 unit)
2. Horizontal stretch: Replace \( x \) with \( 2x \) → \( y = \arctan(2x+1) \) (scale factor 1/2)
3. Vertical translation: Add \( \frac{\pi}{4} \) → \( y = \arctan(2x+1) + \frac{\pi}{4} \) (shift up by π/4)
[3 marks]
(b) Proof of arctangent addition formula:
Solution:
Let \( \theta = \arctan p \) and \( \phi = \arctan q \), so \( \tan \theta = p \) and \( \tan \phi = q \).
Using tangent addition formula:
\[ \tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 – \tan \theta \tan \phi} = \frac{p+q}{1-pq} \]
Therefore:
\[ \theta + \phi = \arctan\left(\frac{p+q}{1-pq}\right) \]
Which proves:
\[ \arctan p + \arctan q = \arctan\left(\frac{p+q}{1-pq}\right) \]
[4 marks]
(c) Verification:
Solution:
Using part (b) with \( p = \frac{x}{x+1} \) and \( q = 1 \):
\[ \arctan\left(\frac{x}{x+1}\right) + \arctan 1 = \arctan\left(\frac{\frac{x}{x+1} + 1}{1 – \frac{x}{x+1}}\right) = \arctan(2x+1) \]
Since \( \arctan 1 = \frac{\pi}{4} \), we have:
\[ \arctan(2x+1) = \arctan\left(\frac{x}{x+1}\right) + \frac{\pi}{4} \]
[3 marks]
(d) Proof by induction:
Solution:
Base case (n=1):
\[ \text{LHS} = \arctan\left(\frac{1}{2}\right) = \text{RHS} \]
Inductive step:
Assume true for \( n = k \):
\[ \sum_{r=1}^k \arctan\left(\frac{1}{2r^2}\right) = \arctan\left(\frac{k}{k+1}\right) \]
For \( n = k+1 \):
\[ \text{LHS} = \arctan\left(\frac{k}{k+1}\right) + \arctan\left(\frac{1}{2(k+1)^2}\right) \]
Using part (b):
\[ = \arctan\left(\frac{\frac{k}{k+1} + \frac{1}{2(k+1)^2}}{1 – \frac{k}{2(k+1)^3}}\right) = \arctan\left(\frac{k+1}{k+2}\right) = \text{RHS} \]
Therefore, by induction, the statement holds for all \( n \in \mathbb{Z}^+ \).
[6 marks]
Markscheme:
(a) Correct transformations (A1A1A1)
(b) Correct proof (A1A1A1A1)
(c) Correct verification (A1A1A1)
(d) Correct base case (A1), inductive hypothesis (A1), inductive step (A1A1A1A1)
Total: [16 marks]
The quadratic function \( f(x) = p + qx – x^2 \) has a maximum value of 5 when \( x = 3 \).
(a) Find the value of \( p \) and the value of \( q \). [4]
(b) The graph of \( f(x) \) is translated 3 units in the positive direction parallel to the \( x \)-axis. Determine the equation of the new graph. [2]
▶️ Answer/Explanation
(a) Finding p and q:
Method 1 (Using Calculus):
1. Find the derivative: \( f'(x) = q – 2x \)
2. At maximum point \( x = 3 \): \( q – 6 = 0 \) ⇒ \( q = 6 \) (A1)
3. Substitute into original function: \( f(3) = p + 18 – 9 = 5 \) ⇒ \( p = -4 \) (A1)
Method 2 (Vertex Form):
1. Vertex form: \( f(x) = -(x-3)^2 + 5 \)
2. Expand: \( -x^2 + 6x – 4 \) ⇒ \( q = 6 \), \( p = -4 \) (A1A1)
[4 marks]
(b) Translated graph equation:
Solution:
For horizontal translation (right by 3 units), replace \( x \) with \( (x-3) \):
\( g(x) = -4 + 6(x-3) – (x-3)^2 \)
Simplified form: \( g(x) = -x^2 + 12x – 31 \) (M1A1)
[2 marks]
Markscheme:
(a) Correct derivative (M1), correct \( q \) (A1), correct substitution (M1), correct \( p \) (A1)
(b) Correct translation (M1), correct equation (A1)
Total: [6 marks]