Home / IBDP Maths analysis and approaches Topic: SL 2.5 Composite functions f∘g HL Paper 1

IBDP Maths analysis and approaches Topic: SL 2.5 Composite functions f∘g HL Paper 1

Question

Consider the functions \(f(x) = \sqrt{3}sinx + cos x\) where 0 ≤ x ≤ π and g(x) = 2x where x ∈ R.

(a) Find ( f ο g)(x).

▶️Answer/Explanation

Ans: ( f ο g)(x) = f (2x)
       \(f(2x) = \sqrt{3}sin2x + cos 2x\)

(b) Solve the equation ( f ο g)(x) = 2 cos 2x where 0 ≤ x ≤ π.

▶️Answer/Explanation

Ans: \(\sqrt{3}sin2x + cos 2x = 2cos 2x\)

\(\sqrt{3}sin2x = cos 2x \)

recognizing to use tan or cot

\(tan2x = \frac{1}{\sqrt{3}} OR cot2x = \sqrt{3}\)  (values may be seen in right triangle)

\(\left ( arctan\left ( \frac{1}{\sqrt{3}} \right )= \right )\frac{\pi }{6}\)   (seen anywhere) (accept degrees) 

\(2x = \frac{\pi }{6}, \frac{7\pi }{6}\)

\(x = \frac{\pi }{12}, \frac{7\pi }{12}\)

Question:

A function f is defined by \(f(x) = \frac{1}{x^{2}-2x-3},\) where x ∈ R, x ≠ -1, x ≠ 3 .

(a) Sketch the curve y = f (x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.
A function g is defined by \(g(x) = \frac{1}{x^{2}-2x-3},\) where x ∈ R, x >3.

▶️Answer/Explanation

Ans:

Note: Accept an indication of \(-\frac{1}{3} on the y-axis.\)

vertical asymptotes x =−1 and x = 3
horizontal asymptote  y = 0
uses a valid method to find the x-coordinate of the local maximum point

Note: For example, uses the axis of symmetry or attempts to solve f’ (x) = 0 .

local maximum point  \(\left ( 1,-\frac{1}{4} \right )\)

Note: Award (M1)A0 for a local maximum point at x =1 and coordinates not given.

three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other

(b) The inverse of g is g-1.
(i) Show that \(g^{-1}(x)=1+\frac{\sqrt{4x^{2}+x}}{x}.\)
(ii) State the domain of g-1.

A function h is defined by h(x) = arctan \(\frac{x}{2}\), where x ∈ R.

▶️Answer/Explanation

Ans:

(c) Given that (h º g) (a) = \(\frac{\pi }{4},\) find the value of a. 
      Give your answer in the form \(p + \frac{q}{2}\sqrt{r},\) where p, q, r ∈ Z+ .

▶️Answer/Explanation

Ans:

Question:

Consider the functions \(f(x) = \sqrt{3}sinx + cos x\) where 0 ≤ x ≤ π and g(x) = 2x where x ∈ R.

(a) Find ( f ο g)(x).

▶️Answer/Explanation

Ans: 

(b) Solve the equation ( f ο g)(x) = 2 cos 2x where 0 ≤ x ≤ π.

▶️Answer/Explanation

Ans:

\(\sqrt{3}sin2x + cos 2x = 2cos 2x\)

\(\sqrt{3}sin2x = cos 2x \)

recognizing to use tan or cot

\(tan2x = \frac{1}{\sqrt{3}} OR cot2x = \sqrt{3}\)  (values may be seen in right triangle)

\(\left ( arctan\left ( \frac{1}{\sqrt{3}} \right )= \right )\frac{\pi }{6}\)   (seen anywhere) (accept degrees) 

\(2x = \frac{\pi }{6}, \frac{7\pi }{6}\)

\(x = \frac{\pi }{12}, \frac{7\pi }{12}\)

Question:

The graph of y = f (x) for -4 ≤ x ≤ 6 is shown in the following diagram.

 
 (a)        Write down the value of

 (i)       f (2) ;

(ii)      ( f o f )(2) .                                                                                                                                                             [2]

▶️Answer/Explanation

Ans: (i) f(2) = 6

(ii) (fof)2=− 2 [2 marks]

 (b)        Let g(x) = \(\frac{1}{2} f (x) +1\) for -4 ≤ x ≤ 6 . On the axes above, sketch the graph of g .                   [3]

▶️Answer/Explanation

Ans:

(b)

Question

The functions f and g are defined as:

\[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant 0\]

\[g(x) = \frac{1}{{x + 3}},{\text{ }}x \ne – 3.\]

(a)     Find \(h(x){\text{ where }}h(x) = g \circ f(x)\) .

▶️Answer/Explanation

Ans: \(h(x) = g \circ f(x) = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}},{\text{ }}(x \geqslant 0)\)     (M1)A1

(b)     State the domain of \({h^{ – 1}}(x)\) .
▶️Answer/Explanation

Ans: \(0 < x \leqslant \frac{1}{4}\)     A1A1

Note: Award A1 for limits and A1 for correct inequality signs.

(c)     Find \({h^{ – 1}}(x)\) .
▶️Answer/Explanation

Ans:

\(y = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}}\)

\(y{{\text{e}}^{{x^2}}} + 3y = 1\)     M1

\({{\text{e}}^{{x^2}}} = \frac{{1 – 3y}}{y}\)     A1

\({x^2} = \ln \frac{{1 – 3y}}{y}\)     M1

\(x = \pm \sqrt {\ln \frac{{1 – 3y}}{y}} \)

\( \Rightarrow {h^{ – 1}}(x) = \sqrt {\ln \frac{{1 – 3x}}{x}} {\text{ }}\left( { = \sqrt {\ln \left( {\frac{1}{x} – 3} \right)} } \right)\)     A1

[8 marks]

Question

Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne – 2{\text{ and }}g(x) = x – 1\).

If \(h = g \circ f\) , find

(a)     h(x) ;

▶️Answer/Explanation

Ans: \(h(x) = g\left( {\frac{4}{{x + 2}}} \right)\)     (M1)

\( = \frac{4}{{x + 2}} – 1\,\,\,\,\,\left( { = \frac{{2 – x}}{{2 + x}}} \right)\)     A1

(b)     \({h^{ – 1}}(x)\) , where \({h^{ – 1}}\) is the inverse of h.
▶️Answer/Explanation

Ans: METHOD 1

\(x = \frac{4}{{y + 2}} – 1\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\((y + 2)(x + 1) = 4\,\,\,\,\,\left( {y + 2 = \frac{4}{{x + 1}}} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{4}{{x + 1}} – 2\,\,\,\,\,(x \ne – 1)\)     A1     N1

METHOD 2

\(x = \frac{{2 – y}}{{2 + y}}\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\(xy + y = 2 – 2x\,\,\,\,\,\left( {y(x + 1) = 2(1 – x)} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{{2(1 – x)}}{{x + 1}}\,\,\,\,\,(x \ne – 1)\)     A1     N1

Note: In either METHOD 1 or METHOD 2 rearranging first and interchanging afterwards is equally acceptable.

 [6 marks]

Question

Shown below are the graphs of \(y = f(x)\) and \(y = g(x)\).

 

 

If \((f \circ g)(x) = 3\), find all possible values of x.

▶️Answer/Explanation

Markscheme

\(g(x) = 0{\text{ or 3}}\)     (M1)(A1)

x = –1 or 4 or 1 or 2     A1A1

Notes: Award A1A1 for all four correct values,

A1A0 for two or three correct values,

A0A0 for less than two correct values.

Award M1 and corresponding A marks for correct attempt to find expressions for f and g.

 

[4 marks]

Scroll to Top