IB Mathematics AA HL Flashcards SL 3.6 Pythagorean identities

[qdeck ” bold_text=”false”]

[h] SL 3.6 Pythagorean identities

[q] Pyhtagorean Identity 

[a] Going back to the right-angled traingle in the unit circle again, one thing we can do here is to apply the Pythagorean Theorem, i.e: \(a^2+b^2=c^2\). In this case, \(sin^2\theta+cos^2\theta=1\).

[q] Double angle formula  

[a] These are formulae for  \(sin2\theta\) and \(cos2\theta\), both in terms of just \(sin\theta\) or \(cos\theta\). These can also be helpful for proving identities and solving trigonometric equations. 

[q] \(sin2\theta\)

[a] \(sin2\theta = 2sin\theta×cos\theta\)

[q] \(cos2\theta\)

[a] \(cos2\theta = cos^2\theta-sin^2\theta = 2cos^2\theta-1=1-2sin^2\theta\)
 

[x] Exit text

(enter text or “Add Media”; select text to format)

[/qdeck]

IB Mathematics AA HL Flashcards SL 3.6 Pythagorean identities

IB Mathematics AA HL Flashcards- All Topics

Scroll to Top