Home / IB DP Maths 2026, 2027 & 2028 / IB Math Analysis and Approach HL / MAA HL Study Notes / IB Mathematics AA AHL Differential equations Study Notes

IB Mathematics AA AHL Differential equations Study Notes

IB Mathematics AA AHL Differential equations Study Notes - New Syllabus

IB Mathematics AA AHL Differential equations Study Notes

LEARNING OBJECTIVE

  • Differential equations

Key Concepts: 

  • Differential equations
  • Variables separable
  • Homogeneous differential equation 

MAA HL and SL Notes – All topics

First Order Differential Equations

First Order Differential Equations

First order differential equations are equations involving the first derivative of a function, typically written as:

$\boxed{ \frac{dy}{dx} = f(x, y) }$

These equations describe how the dependent variable \( y \) changes with respect to the independent variable \( x \), and are foundational in modeling dynamic systems in physics, biology, economics, and more.

Types of First Order Differential Equations

TypeGeneral FormSolution Method
Separable\(\frac{dy}{dx} = g(x)h(y)\)Separate variables and integrate both sides
Linear\(\frac{dy}{dx} + P(x)y = Q(x)\)Use integrating factor \( \mu(x) = e^{\int P(x) dx} \)
Homogeneous\(\frac{dy}{dx} = F\left(\frac{y}{x}\right)\)Use substitution \( v = \frac{y}{x} \)
Exact\( M(x, y)dx + N(x, y)dy = 0 \)Check if exact; solve using potential function
Numerical (Euler’s Method)Applicable to any \( \frac{dy}{dx} = f(x, y) \)Use iterative approach for approximation

 General Solution Process

  •  Identify the type of the first order equation: separable, linear, etc.
  •  Rearrange the equation as needed to match the standard form.
  •  Solve using integration or the relevant method.
  •  Apply initial conditions if given, to find the particular solution.

Numerical Solution of \(\frac{dy}{dx} = f(x, y)\) using Euler’s Method

Euler’s Method

Euler’s Method is a numerical technique used to approximate the solution of first-order differential equations of the form:

$\boxed{ \frac{dy}{dx} = f(x, y) }$

It provides an estimated value of \( y \) at discrete points using an initial value and a fixed step size \( h \).

 Euler’s Update Formula

Given: \( y(x_0) = y_0 \) and step size \( h \)

Then:

$ \boxed{x_{n+1} = x_n + h \quad \text{and} \quad y_{n+1} = y_n + h \cdot f(x_n, y_n)} $

 Step-by-Step Algorithm

  1. Start with initial values: \( x_0 \), \( y_0 \), and step size \( h \).
  2. Compute \( y_1 = y_0 + h \cdot f(x_0, y_0) \)
  3. Compute \( x_1 = x_0 + h \)
  4. Repeat the process for the desired number of steps or until a specific \( x \)-value is reached.

Example:

Approximate the solution to

$ \frac{dy}{dx} = x + y, \quad y(0) = 1 $

using Euler’s method with step size \( h = 0.1 \), for 3 steps.

▶️ Answer/Explanation
Step\( x_n \)\( y_n \)\( f(x_n, y_n) = x_n + y_n \)\( y_{n+1} = y_n + h f(x_n, y_n) \)
00.01.0001.0001.000 + 0.1(1.000) = 1.100
10.11.1001.2001.100 + 0.1(1.200) = 1.220
20.21.2201.4201.220 + 0.1(1.420) = 1.362

Answer: The approximate value of \( y \) after 3 steps (at \( x = 0.3 \)) is:

$ \rm{y(0.3) \approx 1.362}$

Notes

  • The smaller the step size \( h \), the more accurate the approximation (but more computation).
  • Euler’s method is simple but can accumulate error quickly for large intervals or stiff equations.

Example: (GDC)

Use Euler’s method to approximate the solution to

$ \frac{dy}{dx} = x – y, \quad y(0) = 1 $

Use a step size of \( h = 0.2 \) to estimate \( y(0.6) \).

▶️ Answer/Explanation

Step 1: Open Spreadsheet Mode

  • Go to the Lists & Spreadsheet app.

Step 2: Enter Headings

  • Column A: `x` values
  • Column B: `y` values
  • Column C: \( f(x, y) = x – y \)

Step 3: Fill Initial Values

  • A1: `0` (initial x)
  • B1: `1` (initial y)
  • C1: `=A1 – B1` → evaluates \( f(x, y) = x – y \)

Step 4: Fill Recursion Formulas

From row 2 downward:

  • A2: `=A1 + 0.2`
  • B2: `=B1 + 0.2 * C1`
  • C2: `=A2 – B2`

Then drag these cells downward to compute successive steps.

Step 5: Read Result

  • At \( x = 0.6 \) (Row 4), the y-value is approximately:

$ \rm{y(0.6) \approx 0.704} $

 Variables Separable

 Variables Separable

A first-order differential equation is separable if it can be written as:

$\boxed{ \frac{dy}{dx} = f(x) \cdot g(y)} $

This allows us to rearrange terms so that all \( y \)-dependent terms are on one side and all \( x \)-dependent terms are on the other:

$\boxed{ \frac{1}{g(y)} \, dy = f(x) \, dx }$

Then we integrate both sides to find the implicit or explicit solution.

 Step-by-Step Procedure

  1. Rewrite the differential equation in the form \( \frac{dy}{dx} = f(x) g(y) \).
  2. Separate variables: move all terms with \( y \) to one side and \( x \) to the other, typically as \( \frac{1}{g(y)} dy = f(x) dx \).
  3. Integrate both sides: \( \int \frac{1}{g(y)} dy = \int f(x) dx + C \).
  4. Solve the resulting equation for \( y \) if possible.

Example

Solve the logistic differential equation \( \frac{dn}{dt} = 2n(5-n) \) with initial condition \( n(0) = 1 \).

▶️ Answer/Explanation

Separate variables and write:

\( \frac{1}{n(5-n)} dn = 2 \, dt \)

Partial fractions:

\( \frac{1}{n(5-n)} = \frac{A}{n} + \frac{B}{5-n} \)

  • Set \( n=0 \): \( 1 = 5A \implies A = \frac{1}{5} \)
  • Set \( n=5 \): \( 1 = 5B \implies B = \frac{1}{5} \)

So:

\( \frac{1}{n(5-n)} = \frac{1}{5} \left( \frac{1}{n} + \frac{1}{5-n} \right) \)

Integrate:

\( \int \frac{1}{n(5-n)} dn = \frac{1}{5} (\ln|n| – \ln|5-n|) + C \)

Equate and integrate right side:

\( \frac{1}{5} \ln \left| \frac{n}{5-n} \right| = 2t + C_1 \)

Exponentiate:

\( \left| \frac{n}{5-n} \right| = Ce^{10t} \), where \( C = e^{5C_1} \)

Express \( n \):

\( n = \frac{5Ce^{10t}}{1 + Ce^{10t}} \)

Use initial condition \( n(0) = 1 \) to find \( C \):

\( 1 = \frac{5C}{1 + C} \Rightarrow 1 + C = 5C \Rightarrow 1 = 4C \Rightarrow C = \frac{1}{4} \)

$ \rm{ n(t) = \frac{5 \cdot \frac{1}{4} e^{10t}}{1 + \frac{1}{4} e^{10t}} = \frac{ \frac{5}{4} e^{10t}}{1 + \frac{1}{4} e^{10t}} = \frac{5 e^{10t}}{4 + e^{10t}} } $

Homogeneous Equations

Homogeneous Equations

A first-order differential equation is called homogeneous if it can be written in the form:

$\boxed{\frac{dy}{dx} = f\left(\frac{y}{x}\right) }$

where the right-hand side is a function of the ratio \( \frac{y}{x} \) only.

 Method: Substitution \( y = vx \)

To solve such equations, use the substitution:

$\boxed{ y = v x \quad \Rightarrow \quad \frac{dy}{dx} = v + x \frac{dv}{dx} }$

Substitute into the original differential equation to obtain an equation involving \( v \) and \( x \):

$\boxed{ v + x \frac{dv}{dx} = f(v) }$

This can be rearranged into a separable equation for \( v \) and \( x \):

$\boxed{ x \frac{dv}{dx} = f(v) – v \quad \Rightarrow \quad \frac{dv}{f(v) – v} = \frac{dx}{x} }$

Integrate both sides to find \( v \) in terms of \( x \), then substitute back \( y = vx \) to get the solution.

Example

Solve the differential equation:

\( \displaystyle \frac{dy}{dx} = \frac{y + x}{x} \)

▶️ Answer/Explanation

Solution:

Rewrite the right side in terms of \( \frac{y}{x} \):

\( \displaystyle \frac{y + x}{x} = \frac{y}{x} + 1 = v + 1 \)

Use substitution \( y = v x \) so \( \frac{dy}{dx} = v + x \frac{dv}{dx} \).

\( \displaystyle v + x \frac{dv}{dx} = v + 1 \)

\( \displaystyle x \frac{dv}{dx} = 1 \quad \Rightarrow \quad \frac{dv}{dx} = \frac{1}{x} \)

Separate variables and integrate:

\( \displaystyle dv = \frac{1}{x} dx \quad \Rightarrow \quad \int dv = \int \frac{1}{x} dx \)

So:

\( \displaystyle v = \ln|x| + C \)

\( v = \frac{y}{x} \), so:

\( \displaystyle \frac{y}{x} = \ln|x| + C \quad \Rightarrow \quad y = x (\ln|x| + C) \)

 Solution Using Integrating Factor

 Solution Using Integrating Factor

For a first order linear differential equation of the form:

\(\boxed{ \displaystyle \frac{dy}{dx} + P(x) y = Q(x)} \),

the method of integrating factor (IF) is applied as follows:

Calculate the integrating factor:

\(\boxed{ \displaystyle \mu(x) = e^{\int P(x) \, dx}} \)

Multiply the entire differential equation by \( \mu(x) \), so that the left side becomes the derivative of \( \mu(x) y \):

\(\boxed{ \displaystyle \mu(x) \frac{dy}{dx} + \mu(x) P(x) y = \frac{d}{dx} \left( \mu(x) y \right)} \)

Rewrite the equation as:

\(\boxed{ \displaystyle \frac{d}{dx} \left( \mu(x) y \right) = \mu(x) Q(x)} \)

Integrate both sides with respect to \( x \):

\(\boxed{ \displaystyle \mu(x) y = \int \mu(x) Q(x) \, dx + C } \)

Solve for \( y \):

\(\boxed{ \displaystyle y = \frac{1}{\mu(x)} \left( \int \mu(x) Q(x) \, dx + C \right) } \)

This method converts the original differential equation into an exact derivative form, making it straightforward to integrate and find the solution.

Example

Solve the differential equation:

\( \displaystyle y’ + 2y = e^{-x} \)

▶️ Answer/Explanation

Solution:

Identify \( P(x) = 2 \) and \( Q(x) = e^{-x} \).

integrating factor (IF):

\( \displaystyle \mu(x) = e^{\int 2 dx} = e^{2x} \)

Multiply both sides of the equation by \( \mu(x) \):

\( e^{2x} y’ + 2 e^{2x} y = e^{x} \)

 left side as the derivative of \( e^{2x} y \):

\( \displaystyle \frac{d}{dx} \left( e^{2x} y \right) = e^{x} \)

Integrate both sides:

\( \displaystyle e^{2x} y = \int e^{x} dx + C = e^{x} + C \)

Solve \( y \):

\( \displaystyle y = e^{-2x} (e^{x} + C) = e^{-x} + C e^{-2x} \)

Scroll to Top