Home / IB DP Maths 2026, 2027 & 2028 / IB Math Analysis and Approach HL / MAA HL Study Notes / IB Mathematics AA AHL Maclaurin series Study Notes

IB Mathematics AA AHL Maclaurin series Study Notes

IB Mathematics AA AHL Maclaurin series Study Notes - New Syllabus

IB Mathematics AA AHL Maclaurin series Study Notes

LEARNING OBJECTIVE

  • Maclaurin series

Key Concepts: 

  • Maclaurin series
  • Use of simple substitution

MAA HL and SL Notes – All topics

 Maclaurin Series

 Maclaurin Series

The Maclaurin series is a special case of the Taylor series expanded about \( x = 0 \). It provides a way to represent functions as infinite sums of powers of \( x \).

The Maclaurin series of a function \( f(x) \) is given by:

\(\boxed{ f(x) = f(0) + f'(0) x + \frac{f”(0)}{2!} x^2 + \frac{f^{(3)}(0)}{3!} x^3 + \cdots = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} x^n }\)

where \( f^{(n)}(0) \) is the \( n^{th} \) derivative of \( f(x) \) evaluated at \( x=0 \).

Below are some common Maclaurin series expansions:

1. Exponential function \( e^x \):

\( e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^\infty \frac{x^n}{n!} \)

2. Sine function \( \sin x \):

\( \sin x = x – \frac{x^3}{3!} + \frac{x^5}{5!} – \frac{x^7}{7!} + \cdots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!} \)

3. Cosine function \( \cos x \):

\( \cos x = 1 – \frac{x^2}{2!} + \frac{x^4}{4!} – \frac{x^6}{6!} + \cdots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} \)

4. Natural logarithm \( \ln(1+x) \), valid for \( -1 < x \leq 1 \):

\( \ln(1+x) = x – \frac{x^2}{2} + \frac{x^3}{3} – \frac{x^4}{4} + \cdots = \sum_{n=1}^\infty (-1)^{n+1} \frac{x^n}{n} \)

5. General binomial expansion \( (1+x)^p \), for any rational \( p \in \mathbb{Q} \), valid for \( |x| < 1 \):

$(1+x)^p = 1 + p x + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots = \sum_{n=0}^\infty \binom{p}{n} x^n $

where the generalized binomial coefficient is \( \displaystyle \binom{p}{n} = \frac{p(p-1)(p-2) \cdots (p-n+1)}{n!} \), with \( \binom{p}{0} = 1 \).

Example

Find the Maclaurin series expansion of \( f(x) = e^x \) up to the term in \( x^3 \).

▶️ Answer/Explanation

Solution:

 Maclaurin series for \( e^x \):

\( e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \)

terms up to \( n=3 \):

\( e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \)

This is the required expansion up to \( x^3 \).

\( e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \)

 Using Manipulation to Obtain Other Maclaurin Series

 Using Manipulation to Obtain Other Maclaurin Series

Once we know the Maclaurin series for some basic functions, we can find series for more complicated functions by applying:

  • Substitution: Replace \( x \) by some function \( g(x) \) inside a known series.
  • Products: Multiply two known series term-by-term.
  • Differentiation: Differentiate a Maclaurin series term-by-term to find the series for the derivative of the function.
  • Integration: Integrate a Maclaurin series term-by-term to find the series for the integral of the function.

Example : 

Find the Maclaurin series for \( e^{x^2} \) up to and including the term in \( x^6 \).

▶️ Answer/Explanation

Solution:

Maclaurin series for \( e^x \):
\( e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)

Substitute \( x^2 \) for \( x \):
\( e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \cdots \)

terms up to \( x^6 \):
\( e^{x^2} \approx 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} \)

Example : 

Find the Maclaurin series for \( e^x \sin x \) up to and including the term in \( x^4 \).

▶️ Answer/Explanation

Solution:

 Maclaurin series for \( e^x \):
\( e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots \)

Maclaurin series for \( \sin x \):
\( \sin x = x – \frac{x^3}{6} + \frac{x^5}{120} – \cdots \)

Multiply the two series term-by-term, 
$ e^x \sin x \approx (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24})(x – \frac{x^3}{6}) $

\( 1 \times x = x \)

\( 1 \times \left(-\frac{x^3}{6}\right) = -\frac{x^3}{6} \)

\( x \times x = x^2 \)

\( x \times \left(-\frac{x^3}{6}\right) = -\frac{x^4}{6} \)

\( \frac{x^2}{2} \times x = \frac{x^3}{2} \)

\( \frac{x^3}{6} \times x = \frac{x^4}{6} \)

Sum the terms up to \( x^4 \):

$ e^x \sin x \approx x + x^2 + \left(-\frac{1}{6} + \frac{1}{2}\right) x^3 + \left(-\frac{1}{6} + \frac{1}{6}\right) x^4 = x + x^2 + \frac{1}{3} x^3 + 0 \cdot x^4 $

So up to \( x^4 \), the series is:

\( e^x \sin x \approx x + x^2 + \frac{x^3}{3} \)

Maclaurin Series from Differential Equations

Maclaurin Series from Differential Equations

Sometimes, the Maclaurin series for a function can be found by solving a differential equation using power series methods.

  • Assume the solution \( y = \sum_{n=0}^\infty a_n x^n \) (a power series centered at 0).
  • Substitute \( y \), its derivatives \( y’, y” \), etc., into the differential equation.
  • Match coefficients of powers of \( x \) to find a recurrence relation for \( a_n \).
  • Use initial conditions (like \( y(0) \), \( y'(0) \)) to find specific coefficients.

This process allows you to derive the Maclaurin series expansion of solutions to differential equations.

Example:

Finding the Maclaurin Series for \( y \) satisfying \( y” + y = 0 \) with \( y(0) = 1 \), \( y'(0) = 0 \)

▶️ Answer/Explanation

 Assume a power series solution
$ y = \sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots $

$ y’ = \sum_{n=1}^\infty n a_n x^{n-1} = a_1 + 2 a_2 x + 3 a_3 x^2 + 4 a_4 x^3 + \cdots $

$ y” = \sum_{n=2}^\infty n (n-1) a_n x^{n-2} = 2 a_2 + 6 a_3 x + 12 a_4 x^2 + 20 a_5 x^3 + \cdots $

Substitute into the differential equation \( y” + y = 0 \):

$ \sum_{n=2}^\infty n(n-1) a_n x^{n-2} + \sum_{n=0}^\infty a_n x^n = 0 $

Change index on first sum to match powers of \( x^n \) by letting \( m = n – 2 \):

$ \sum_{m=0}^\infty (m+2)(m+1) a_{m+2} x^m + \sum_{n=0}^\infty a_n x^n = 0 $ Rename \( m \to n \) for clarity:

$ \sum_{n=0}^\infty \left[ (n+2)(n+1) a_{n+2} + a_n \right] x^n = 0 $

 For this to hold for all \( x \), each coefficient must be zero:

$ (n+2)(n+1) a_{n+2} + a_n = 0 \quad \Rightarrow \quad a_{n+2} = – \frac{a_n}{(n+2)(n+1)} $

initial conditions:

\( y(0) = a_0 = 1 \), and \( y'(0) = a_1 = 0 \).

Calculate coefficients:

$ a_2 = -\frac{a_0}{2 \times 1} = -\frac{1}{2} $ $ a_3 = -\frac{a_1}{3 \times 2} = 0 $

$ a_4 = -\frac{a_2}{4 \times 3} = -\frac{-1/2}{12} = \frac{1}{24} $ $ a_5 = -\frac{a_3}{5 \times 4} = 0 $

$ a_6 = -\frac{a_4}{6 \times 5} = -\frac{1/24}{30} = -\frac{1}{720} $ and so on.

$ y = 1 – \frac{x^2}{2!} + \frac{x^4}{4!} – \frac{x^6}{6!} + \cdots $ which is the Maclaurin series for \( \cos x \).

Scroll to Top