IB Mathematics AA HL Polar Forms Euler’s Form Study Notes

IB Mathematics AA HL Polar Forms Euler's Form Study Notes

IB Mathematics AA HL Polar Forms Euler’s Form Study Notes

IB Mathematics AA HL Polar Forms Euler’s Form Study Notes Offer a clear explanation of Polar Forms Euler’s Form , including various formula, rules, exam style questions as example to explain the topics. Worked Out  examples and common problem types provided here will be sufficient to cover for topic Polar Forms Euler’s Form.

Modulus–Argument (Polar) Form

Modulus–Argument (Polar) Form

A complex number \( z = a + bi \) can also be expressed in polar form as:

\( z = r(\cos \theta + i\sin \theta) \)

Key Definitions

Modulus (r): The distance from the origin to the point:

\( r = |z| = \sqrt{a^2 + b^2} \)

Argument (θ): The angle with the positive real axis:

\( \theta = \tan^{-1}\left(\frac{b}{a}\right) \)

Notation: \( z = r \text{cis} \theta \) is shorthand for \( z = r(\cos \theta + i \sin \theta) \)

Note: The value of \( \theta \) depends on the quadrant in which the complex number lies.

Examples

  1. Convert \( z = 4 + 3i \) to polar form.
  2. Convert \( z = -2 – 5i \) to polar form.
▶️ Answer/Explanation

1.\( z = 4 + 3i \):

    • Modulus: \( r = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \)
    • Argument: \( \theta = \tan^{-1}\left(\frac{3}{4}\right) \approx 0.644 \, \text{rad} \)
    • Polar form: \( z = 5(\cos 0.644 + i\sin 0.644) \) 

2.\( z = -2 – 5i \):

    • Modulus: \( r = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \)
    • Argument: \( \theta = \tan^{-1}\left(\frac{-5}{-2}\right) = \tan^{-1}(2.5) \approx 1.190 \, \text{rad} \)
    • But since it’s in quadrant III, add \( \pi \):
      \( \theta \approx 1.190 + \pi \approx 4.332 \, \text{rad} \)
    • Polar form: \( z \approx 5.385(\cos 4.332 + i\sin 4.332) \) 

Euler Form of Complex Numbers

Euler Form of Complex Numbers

The Euler form of a complex number is a compact way to write it using exponential notation:

\( z = re^{i\theta} \)

Key Concepts

ConceptFormula
Euler’s Formula\( e^{i\theta} = \cos \theta + i\sin \theta \)
Modulus (r)\( r = |z| = \sqrt{a^2 + b^2} \)
Argument (θ)\( \theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \)
Euler Form\( z = re^{i\theta} \)

This is simply the polar form written using Euler’s identity, and it’s especially useful for multiplication, division, and powers/roots of complex numbers.

Why Euler Form?

OperationFormula
Multiplication\( z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \)
Division\( \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 – \theta_2)} \)
Powers\( z^n = r^n e^{in\theta} \)
Roots\( \sqrt[n]{z} = \sqrt[n]{r} \cdot e^{i(\frac{\theta + 2k\pi}{n})} \), where \( k = 0, 1, \ldots, n-1 \)

Examples

  1. Express \( z = 4 + 4i \) in Euler form.
  2. Find the cube of \( z = 2e^{i\frac{\pi}{4}} \)
▶️Answer/Explanation

1. \( z = 4 + 4i \)

    • Modulus: \( r = \sqrt{4^2 + 4^2} = \sqrt{32} = 4\sqrt{2} \)
    • Argument: \( \theta = \tan^{-1}(1) = \frac{\pi}{4} \)
    • Euler form: \( z = 4\sqrt{2} \cdot e^{i\frac{\pi}{4}} \)

2. \( z = 2e^{i\frac{\pi}{4}} \Rightarrow z^3 = ? \)

    • Use: \( z^n = r^n e^{in\theta} \)
    • \( z^3 = 2^3 e^{i3\cdot \frac{\pi}{4}} = 8e^{i\frac{3\pi}{4}} \)

Example

Given: \( z = 3 + 3\sqrt{3}i \)

Convert to: Modulus–Argument (Polar) Form & Euler Form.

▶️ Answer/Explanation

\( r = |z| = \sqrt{3^2 + (3\sqrt{3})^2} = \sqrt{9 + 27} = \sqrt{36} = 6 \)

\( \theta = \tan^{-1}\left(\frac{3\sqrt{3}}{3}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \)

Polar form
\( z = 6(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \)

Euler form
\( z = 6e^{i\frac{\pi}{3}} \)

Complex Number Operation

Complex Number Operation

Sum (Addition/Subtraction) in Cartesian Form

If \( z_1 = a + bi \) and \( z_2 = c + di \), then:

\( z_1 \pm z_2 = (a \pm c) + (b \pm d)i \)

Geometric Interpretation: Addition of complex numbers is like vector addition in the complex plane – the result is the diagonal of the parallelogram formed.

 Product in Polar or Euler Form

Let \( z_1 = r_1 \text{cis} \theta_1 \), \( z_2 = r_2 \text{cis} \theta_2 \), or \( z_1 = r_1 e^{i\theta_1} \), \( z_2 = r_2 e^{i\theta_2} \), then:

\( z_1 z_2 = r_1 r_2 \text{cis}(\theta_1 + \theta_2) \) or \( z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \)

Geometric Interpretation: Multiplication scales the length and rotates the point by the sum of angles.

Quotient in Polar or Euler Form

Let \( z_1 = r_1 \text{cis} \theta_1 \), \( z_2 = r_2 \text{cis} \theta_2 \), or \( z_1 = r_1 e^{i\theta_1} \), \( z_2 = r_2 e^{i\theta_2} \), then:

\( \frac{z_1}{z_2} = \frac{r_1}{r_2} \text{cis}(\theta_1 – \theta_2) \) or \( \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 – \theta_2)} \)

Geometric Interpretation: Division scales the modulus and rotates in the opposite direction of the divisor’s argument.

Example : Sum in Cartesian Form

Given: \( z_1 = 4 + 3i \), \( z_2 = -2 + 5i \)

Find: \( z_1 + z_2 \)

▶️ Answer/Explanation

Real part: \( 4 + (-2) = 2 \)

Imaginary part: \( 3i + 5i = 8i \)

Answer: \( z_1 + z_2 = 2 + 8i \)

Example : Product in Polar Form

Given: \( z_1 = 3\text{cis}45^\circ \), \( z_2 = 2\text{cis}30^\circ \)

Find: \( z_1 \cdot z_2 \)

▶️ Answer/Explanation

Multiply moduli: \( 3 \cdot 2 = 6 \)

Add arguments: \( 45^\circ + 30^\circ = 75^\circ \)

Answer: \( z_1 \cdot z_2 = 6\text{cis}75^\circ \)

Example : Quotient in Euler Form

Given: \( z_1 = 8e^{i\frac{\pi}{3}} \), \( z_2 = 2e^{i\frac{\pi}{6}} \)

Find: \( \frac{z_1}{z_2} \)

▶️ Answer/Explanation

Divide moduli: \( \frac{8}{2} = 4 \)

Subtract exponents: \( \frac{\pi}{3} – \frac{\pi}{6} = \frac{\pi}{6} \)

Answer: \( \frac{z_1}{z_2} = 4e^{i\frac{\pi}{6}} \)

Scroll to Top